Vegetation Density (vegetation + density)

Distribution by Scientific Domains
Distribution within Life Sciences


Selected Abstracts


Satellite sleuthing: does remotely sensed land-cover change signal ecological degradation in a protected area?

DIVERSITY AND DISTRIBUTIONS, Issue 2 2009
T. A. Waite
ABSTRACT Aim, We evaluate whether remotely sensed land-cover change within a newly protected area signalled human-driven ecological degradation. Vegetation density changed in a quarter of pixels during the first 13 years (1986,1999) following the sanctuary's formal enclosure, with many patches showing a decrease in density. We use on-the-ground data collected in 2006 in 132 random plots to explore whether these changes in vegetation density reliably signalled latent shifts in local diversity of woody plants and whether they could be attributed to illicit activities including fuel wood collection and livestock grazing. Location, Kumbhalgarh Wildlife Sanctuary, Rajasthan, India. Results, Species richness, species sharing, species assemblages, and incidence of invasive and useful species were statistically similar among plots in which vegetation density had decreased, increased or remained similar. Likewise, intensity of disturbance associated with human activities was similar across these plot types. Main conclusions, Our data provide no clear evidence that local changes in vegetation density signalled latent shifts in local diversity of woody plants. They also fail to reveal any clear association between local changes in vegetation density and human-related activities. Finding no evidence that land-cover change led to biotic erosion, we reflect on the utility of resource-use bans in protected areas, particularly those embedded within historically coupled human-nature systems. [source]


Influence of reed stem density on foredune development

EARTH SURFACE PROCESSES AND LANDFORMS, Issue 11 2001
S. M. Arens
Abstract Vegetation density on foredunes exerts an important control on aeolian sediment transport and deposition, and therefore on profile development. In a long-term monitoring field experiment, three plots were planted with regular grids of reed bundles in three different densities: 4, 2 and 1 bundles per m2. This study reports on the differences in profile development under the range of vegetation densities. Topographic profiles were measured between May 1996 and April 1997. Results indicate important differences in profile development for the three reed bundle densities: in the highest density plot a distinct, steep dune developed, while in the lowest density a more gradual and smooth sand ramp was deposited. When the stems had been completely buried, differences in profile evolution vanished. After a second planting of reed stems in January 1997 the process was repeated. In May 1997, all plots had gained a sand volume ranging from 11·5 to 12·3 m3 m,1, indicating that the sediment budget is relatively constant, regardless of the particular profile evolution. The field evidence is compared with simulations of profile development, generated by the foredune development model SAFE. The model successfully reproduces the overall profile development, but in general, the equations used for vegetation,transport interaction overestimate the effect of vegetation. This causes some deviations between field and model results. Several reasons for this are discussed. Based on the experiments reported here, recommendations are given for further research. Copyright © 2001 John Wiley & Sons, Ltd. [source]


Effects of waterfowl and fish on submerged vegetation and macroinvertebrates

FRESHWATER BIOLOGY, Issue 11 2002
Ola Marklund
SUMMARY 1. With the aim to assess the combined and separate effects of waterfowl and fish on submerged vegetation and macroinvertebrates, we performed a replicated selective exclosure study in a shallow, eutrophic lake in southern Sweden. Our results are presented together with a literature review of the effects of fish and waterfowl on macroinvertebrates and submerged vegetation. 2. Based on our experiment and on published data, we conclude that waterfowl normally will reduce submerged vegetation only at high waterfowl densities, at very low vegetation densities, or in the colonisation phase of the vegetation. 3. Further, we conclude that in shallow temperate eutrophic lakes, a naturally occurring mixed fish assemblage rarely reduces submerged vegetation. Unless the vegetation is very sparse, the risk of severe reduction of submerged vegetation as a result of waterfowl or fish grazing, should thereby be low. 4. Even relatively low densities of fish seem to reduce macroinvertebrate biomass, while a mixed waterfowl assemblage rarely has a significant effect on macroinvertebrate biomass. [source]


Predicting Root Density in Streambanks,

JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 2 2008
Candice Piercy
Abstract:, Roots of riparian vegetation increase streambank erosion resistance and structural stability; therefore, knowledge of root density and distribution in streambanks is useful for stream management and restoration. The objective of this study was to compare streambank root distributions for herbaceous and woody vegetation and to develop empirical models to predict root density. Root length density, root volume ratio, soil physical and chemical properties, and above-ground vegetation densities were measured at 25 sites on six streams in southwestern Virginia. The Mann-Whitney test was used to determine differences in root density along stream segments dominated by either woody or herbaceous vegetation. Multiple linear regression was used to develop relationships between root density and site characteristics. Study results showed that roots were evenly distributed across the bank face with the majority of roots having diameters less than 2 mm. Soil bulk density and above-ground vegetation were key factors influencing root density. While significant relationships were developed to predict root density, the predictive capabilities of the equations was low. Because of the highly variable nature of soil and vegetation properties, it is recommended at this time that soil erodibility and root density be measured in the field for design and modeling purposes, rather than estimated based on empirical relationships. [source]


Landscape features and crustacean prey as predictors of the Southern river otter distribution in Chile.

ANIMAL CONSERVATION, Issue 6 2009
M. A. Sepúlveda
Abstract Understanding the processes that affect freshwater ecosystems at the watershed level is fundamental for the conservation and management of river otters. During 2 consecutive years, we surveyed the occurrence of the Southern river otter Lontra provocax and its main prey (crustaceans) in a watershed of 9900 km2 in the Chilean temperate forest. We modeled predator and prey distributions with a variety of statistical techniques by relating a set of environmental predictors to species occurrence records. Otter and crustaceans were associated with areas of intermediate to low human disturbance with a mosaic of riparian vegetation densities, mainly at low altitudes. The singularity of the Andean Range, with a very marked elevation gradient and oligotrophic watercourses in the higher areas, created more vulnerable conditions for otter presence because prey abundances were limited in those areas. Human impacts affected otter populations at a landscape scale through the presence of main roads, as these were mostly located in lower parts of the watershed where otters have their primary habitat. These results point to the importance of land management and protection of low-elevation areas where otters still occur to ensure the long-term viability of its freshwater populations. [source]


Microhabitat Selection of three Forest Understory Birds in the Brazilian Atlantic Rainforest

BIOTROPICA, Issue 3 2010
Miriam M. Hansbauer
ABSTRACT When assessing fragmentation effects on species, not only habitat preferences on the landscape scale, but also microhabitat selection is an important factor to consider, as microhabitat is also affected by habitat disturbance, but nevertheless essential for species for foraging, nesting and sheltering. In the Atlantic Rainforest of Brazil we examined microhabitat selection of six Pyriglena leucoptera (white-shouldered fire-eye), 10 Sclerurus scansor (rufous-breasted leaftosser), and 30 Chiroxiphia caudata (blue manakin). We radio-tracked the individuals between May 2004 and February 2005 to gain home ranges based on individual fixed kernels. Vegetation structures in core plots and fringe plots were compared. In C. caudata, we additionally assessed the influence of behavioural traits on microhabitat selection. Further, we compared microhabitat structures in the fragmented forest with those in the contiguous, and contrasted the results with the birds' preferences. Pyriglena leucoptera preferred liana tangles that were more common in the fragmented forest, whereas S. scansor preferred woody debris, open forest floor (up to 0.5 m), and a thin closed leaf litter cover which all occurred significantly more often in the contiguous forest. Significant differences were detected in C. caudata for vegetation densities in the different strata; the distance of core plots to the nearest lek site was significantly influenced by sex and age. However, core sites of C. caudata in fragmented and contiguous forests showed no significant differences in structure. Exploring microhabitat selection and behavior may greatly support the understanding of habitat selection of species and their susceptibility to fragmentation on the landscape scale. Abstract in Portuguese is available at http://www.blackwell-synergy.com/loi/btp [source]


Satellite sleuthing: does remotely sensed land-cover change signal ecological degradation in a protected area?

DIVERSITY AND DISTRIBUTIONS, Issue 2 2009
T. A. Waite
ABSTRACT Aim, We evaluate whether remotely sensed land-cover change within a newly protected area signalled human-driven ecological degradation. Vegetation density changed in a quarter of pixels during the first 13 years (1986,1999) following the sanctuary's formal enclosure, with many patches showing a decrease in density. We use on-the-ground data collected in 2006 in 132 random plots to explore whether these changes in vegetation density reliably signalled latent shifts in local diversity of woody plants and whether they could be attributed to illicit activities including fuel wood collection and livestock grazing. Location, Kumbhalgarh Wildlife Sanctuary, Rajasthan, India. Results, Species richness, species sharing, species assemblages, and incidence of invasive and useful species were statistically similar among plots in which vegetation density had decreased, increased or remained similar. Likewise, intensity of disturbance associated with human activities was similar across these plot types. Main conclusions, Our data provide no clear evidence that local changes in vegetation density signalled latent shifts in local diversity of woody plants. They also fail to reveal any clear association between local changes in vegetation density and human-related activities. Finding no evidence that land-cover change led to biotic erosion, we reflect on the utility of resource-use bans in protected areas, particularly those embedded within historically coupled human-nature systems. [source]


Impacts of a woody invader vary in different vegetation communities

DIVERSITY AND DISTRIBUTIONS, Issue 5 2008
T. J. Mason
Abstract The impact of an exotic species in natural systems may be dependent not only on invader attributes but also on characteristics of the invaded community. We examined impacts of the invader bitou bush, Chrysanthemoides monilifera ssp. rotundata, in fore and hind dune communities of coastal New South Wales, Australia. We compared invader impacts on vegetation structure, richness of both native and exotic growth forms and community variability in fore and hind dunes. We found that impacts of bitou invasion were context specific: in fore dune shrublands, functionally distinct graminoid, herb and climber rather than shrub growth forms had significantly reduced species richness following bitou invasion. However, in forested hind dunes, the functionally similar native shrub growth form had significantly reduced species richness following bitou invasion. Density of vegetation structure increased at the shrub level in both fore and hind dune invaded communities compared with non-invaded communities. Fore dune ground-level vegetation density declined at invaded sites compared with non-invaded sites, reflecting significant reductions in herb and graminoid species richness. Hind dune canopy-level vegetation density was reduced at invaded compared with non-invaded sites. Bitou bush invasion also affected fore dune community variability with significant increases in variability of species abundances observed in invaded compared with non-invaded sites. In contrast, variability among all hind dune sites was similar. The results suggest that effects of bitou bush invasion are mediated by the vegetation community. When bitou bush becomes abundant, community structure and functioning may be compromised. [source]


Habitat characteristics at bluegill spawning colonies in a South Dakota glacial lake

ECOLOGY OF FRESHWATER FISH, Issue 4 2006
N. J. C. Gosch
Abstract,,, Bluegill (Lepomis macrochirus) primarily reproduce in spawning colonies. We assessed habitat characteristics at 15 bluegill spawning colonies in a South Dakota glacial lake. Nesting sites were visually identified and angling was used to verify the species of nesting fish. Habitat characteristics were measured at each nesting site and compared with those measured at 75 randomly selected sites. In Lake Cochrane, mean water depth of spawning colonies was 1.0 m. Of the 13 habitat characteristics measured, four (substrate type, substrate firmness, vegetation density and dissolved oxygen levels) were significantly different (P , 0.05) between nesting and random sites. Every bluegill nest site contained gravel substrate, despite the availability of muck, sand and rock. Substrate firmness was indexed at 0-cm penetration and vegetation density was low at all nesting sites. Additionally, bluegills selected nesting locations with relatively moderate dissolved oxygen levels. Lake Cochrane bluegill nest sites consisted of shallow, gravel areas with short, low-density, live submergent Chara vegetation. [source]


Human modification of the landscape and surface climate in the next fifty years

GLOBAL CHANGE BIOLOGY, Issue 5 2002
R. S. Defries
Abstract Human modification of the landscape potentially affects exchanges of energy and water between the terrestrial biosphere and the atmosphere. This study develops a possible scenario for land cover in the year 2050 based on results from the IMAGE 2 (Integrated Model to Assess the Greenhouse Effect) model, which projects land-cover changes in response to demographic and economic activity. We use the land-cover scenario as a surface boundary condition in a biophysically-based land-surface model coupled to a general circulation model for a 15-years simulation with prescribed sea surface temperature and compare with a control run using current land cover. To assess the sensitivity of climate to anthropogenic land-cover change relative to the sensitivity to decadal-scale interannual variations in vegetation density, we also carry out two additional simulations using observed normalized difference vegetation index (NDVI) from relatively low (1982,83) and high (1989,90) years to describe the seasonal phenology of the vegetation. In the past several centuries, large-scale land-cover change occurred primarily in temperate latitudes through conversion of forests and grassland to highly productive cropland and pasture. Several studies in the literature indicate that past changes in surface climate resulting from this conversion had a cooling effect owing to changes in vegetation morphology (increased albedo). In contrast, this study indicates that future land-cover change, likely to occur predominantly in the tropics and subtropics, has a warming effect governed by physiological rather than morphological mechanisms. The physiological mechanism is to reduce carbon assimilation and consequently latent relative to sensible heat flux resulting in surface temperature increases up to 2 °C and drier hydrologic conditions in locations where land cover was altered in the experiment. In addition, in contrast to an observed decrease in diurnal temperature range (DTR) over land expected with greenhouse warming, results here suggest that future land-cover conversion in tropics could increase the DTR resulting from decreased evaporative cooling during the daytime. For grid cells with altered land cover, the sensitivity of surface temperature to future anthropogenic land-cover change is generally within the range induced by decadal-scale interannual variability in vegetation density in temperate latitudes but up to 1.5 °C warmer in the tropics. [source]


3D float tracking: in situ floodplain roughness estimation

HYDROLOGICAL PROCESSES, Issue 2 2009
Menno Straatsma
Abstract This paper presents a novel technique to quantify in situ hydrodynamic roughness of submerged floodplain vegetation: 3D float tracking. This method uses a custom-built floating tripod that is released on the inundated floodplain and tracked from shore by a robotic total station. Simultaneously, an acoustic Doppler current profiler (ADCP) collects flow velocity profiles and water depth data. Roughness values are derived from two methods based on (1) run-averaged values of water depth, slope and flow velocity to compute the roughness based on the Chézy equation, assuming uniform flow, (2) the equation for one-dimensional free surface flow in a moving window. A sensitivity analysis using synthetic data proved that the median value of the roughness, derived using method 2, is independent of (1) the noise in water levels, up to 9 mm, (2) bottom surface slope, and (3) topographic undulations. The window size should be at least 40 m for a typical lowland river setup. Field measurements were carried out on two floodplain sections with an average vegetation height of 0·030 (Arnhem) and 0·043 m (Dreumel). Method 1 resulted in a Nikuradse roughness length of 0·08 m for both locations. Method 2 gave 0·12 m for Arnhem and 0·19 m for Dreumel. In Arnhem, a spatial pattern of roughness values was present, which might be related to fractional vegetation cover or vegetation density during the flood peak. 3D float tracking proved a flexible and detailed method for roughness determination in the absence of waves, and provided an unrestricted view from shore. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Habitat structure mediates predation risk for sedentary prey: experimental tests of alternative hypotheses

JOURNAL OF ANIMAL ECOLOGY, Issue 3 2009
Anna D. Chalfoun
Summary 1Predation is an important and ubiquitous selective force that can shape habitat preferences of prey species, but tests of alternative mechanistic hypotheses of habitat influences on predation risk are lacking. 2We studied predation risk at nest sites of a passerine bird and tested two hypotheses based on theories of predator foraging behaviour. The total-foliage hypothesis predicts that predation will decline in areas of greater overall vegetation density by impeding cues for detection by predators. The potential-prey-site hypothesis predicts that predation decreases where predators must search more unoccupied potential nest sites. 3Both observational data and results from a habitat manipulation provided clear support for the potential-prey-site hypothesis and rejection of the total-foliage hypothesis. Birds chose nest patches containing both greater total foliage and potential nest site density (which were correlated in their abundance) than at random sites, yet only potential nest site density significantly influenced nest predation risk. 4Our results therefore provided a clear and rare example of adaptive nest site selection that would have been missed had structural complexity or total vegetation density been considered alone. 5Our results also demonstrated that interactions between predator foraging success and habitat structure can be more complex than simple impedance or occlusion by vegetation. [source]


Responses of ants to selective logging of a central Amazonian forest

JOURNAL OF APPLIED ECOLOGY, Issue 3 2000
H.L. Vasconcelos
Summary 1.,Relatively little information exists on the effects of logging on rain forest organisms, particularly in the Neotropics where logging operations have increased dramatically in recent years. In this study we determined experimentally the effects of selective logging of a central Amazonian forest on ground-living ants. 2.,The experimental design consisted of three 4-ha replicated plots representing control unlogged forest, forest logged 10 years prior to the start of the study (1987), and forest logged 4 years prior to the start of the study (1993). The logging operation removed 50% of the basal area of trees of commercial value, or about eight trees per hectare. This resulted in a significant decrease in canopy cover, and an increase in understorey vegetation density in logged plots relative to controls. 3.,Collection and identification of ants from a total of 360 1-m2 samples of leaf-litter revealed 143 ant species, of which 97 were found in the control plots, 97 in the plots logged in 1987, and 106 in those logged in 1993. Species richness, evenness and mean abundance (ants m,2) per plot did not vary among treatments. Most of the species found in the control plots were also present in the logged plots. However, population density of many species changed as a result of logging, an effect that persisted for at least 10 years after logging. Species commonly found in sites that were directly disturbed by logging (gaps and tracks) were rare in the undisturbed forest, as revealed by an additional collection of ants. 4.,These results suggest that the persistence of ant assemblages typical of undisturbed forest is likely to depend on the amount of structural damage incurred by logging. Thus management techniques that minimize logging impacts on forest structure are likely to help maintain the conservation value of logged forests for ground-dwelling ants. It is particularly important to minimize the extent of logging roads and tracks created by heavy machinery because these areas appear more prone to invasion by non-forest species. [source]


Home ranges and survival of Nahan's Francolin Francolinus nahani in Budongo Forest, Uganda

AFRICAN JOURNAL OF ECOLOGY, Issue 4 2009
Eric Sande
Abstract We studied home ranges, habitat use and survival of radio-tagged Nahan's Francolin in Budongo Forest Reserve, Uganda during July 1998,December 1999. We studied Nahan's Francolin in an unlogged nature reserve, in a compartment logged in 1947,1952 and in a compartment logged twice, in 1963,1964 and 1996,1997. Mean home range was 14.22 ± 1.35 ha (n = 17). The home range was significantly larger in the nature reserve than in the recently logged compartment. Birds spent more time during the day in areas with high understorey vegetation density but preferred to roost and nest between buttresses of large trees. Understorey vegetation density and canopy openness were significantly greater in the logged forest than in the nature reserve. Annual survival of adult Nahan's Francolins was 20.09 ± 7.33% (n = 23). Our results suggest that the maintenance of large trees and areas with high understorey vegetation density are both important for Nahan's Francolin. Résumé Nous avons étudié le territoire, l'utilisation de l'habitat et la survie de francolins de Nahan marqués dans la Réserve Forestière de Budongo, en Ouganda, entre juillet 1998 et décembre 1999. Nous avons étudié les francolins de Nahan dans une réserve naturelle non exploitée, dans une parcelle qui avait été exploitée entre 1947 et 1952 et dans une parcelle où des coupes de bois avaient eu lieu deux fois, en 1963,64 et en 1996,97. Le territoire moyen couvrait 14,22 ± 1,35 ha (n = 17). Le territoire était significativement plus grand dans la réserve naturelle que dans la parcelle récemment exploitée. Pendant la journée, les oiseaux passaient plus de temps dans les endroits où la végétation des sous-bois était très dense, mais ils préféraient se percher et nicher protégés par le rempart de grands arbres. La densité de la végétation des sous-bois et l'ouverture de la canopée étaient sensiblement plus grandes dans la forêt exploitée que dans la réserve naturelle. La survie annuelle des francolins adultes était de 20.09 ± 7.33% (n = 23). Nos résultats suggèrent que le maintien de grands arbres et de zones où la végétation des sous-bois est dense est très important pour le francolin de Nahan. [source]


A new cost-distance model for human accessibility and an evaluation of accessibility bias in permanent vegetation plots in Great Smoky Mountains National Park, USA

JOURNAL OF VEGETATION SCIENCE, Issue 6 2009
R. Todd Jobe
Abstract Question: Can a new cost-distance model help us to evaluate the potential for accessibility bias in ecological observations? How much accessibility bias is present in the vegetation monitoring plots accumulated over the last three decades in Great Smoky Mountains National Park? Location: Great Smoky Mountains National Park, North Carolina and Tennessee, USA. Methods: Distance, slope, stream crossings, and vegetation density were incorporated into a least-cost model of energetic expenditure for human access to locations. Results: Estimated round-trip energy costs for the park ranged from 0 to 1.62 × 105 J kg,1. The estimated round-trip energetic expenditure for the surveys ranged from 53 to 1.51 × 105 J kg,1. Their distribution was more accessible than the random expectation. Ten (17%) of the vegetation types in the park are significantly under-sampled relative to their area, and 16 (29%) are over-sampled. Plots in 18 of the 40 vegetation types exhibited a significant positive correlation with accessibility. Conclusions: The least-cost model is an improvement over previous attempts to quantify accessibility. The bias in plot locations suggests using a least-cost model to test for bias in cases in which human accessibility is confounded with other sources of ecosystem variation. [source]


Public Values for River Restoration Options on the Middle Rio Grande

RESTORATION ECOLOGY, Issue 6 2009
Matthew A. Weber
Abstract River restoration is a widespread phenomenon. This reflects strong public values for conservation, though missing are studies explicitly justifying restoration expenditures. Public restoration benefits are not well quantified, nor are public preferences among diverse activities falling into the broad category "restoration." Our study estimates public values for restoration on the Middle Rio Grande, New Mexico. Stakeholder meetings and public focus groups guided development of a restoration survey mailed to Albuquerque area households. Four restoration categories were defined: fish and wildlife; vegetation density; tree type; and natural river processes. Survey responses supplied data for both choice experiment (CE) and contingent valuation (CV) analyses, two established environmental economics techniques for quantifying public benefits of conservation policies. Full restoration benefits are estimated at over $150 per household per year via the CE and at nearly $50 per household per year via CV. The CE allows value disaggregation among different restoration categories. The most highly valued category was tree type, meaning reestablishing native tree dominance for such species as Cottonwood (Populus deltoides) and eradicating non-native trees such as Saltcedar (Tamarix ramosissma). The high public values we have found for restoration offer economic justification for intensive riparian management, particularly native plant-based restoration in the Southwest. [source]


Responses of two species of heathland rodents to habitat manipulation: Vegetation density thresholds and the habitat accommodation model

AUSTRAL ECOLOGY, Issue 3 2010
VAUGHAN MONAMY
Abstract The abundance of two native rodent species, Rattus lutreolus and Pseudomys gracilicaudatus, has been shown to correlate with vegetation density in coastal wet heath. Fox's habitat accommodation model relates relative abundances of such small mammal species to heathland vegetation regeneration following disturbance. Implicit in the model is recognition that it is successional changes in vegetation, not time per se, that drives the responses of small mammal species along a regeneration axis. Using a brush-cutter we deliberately removed approximately 85% of vegetation around trapping stations and recorded significant reductions in the abundance of both P. gracilicaudatus (an earlier-stage colonizing species) and R. lutreolus (a late seral-stage species). A significant decrease in the abundance of only the latter had been demonstrated previously when 60,70% of the vegetation had been removed. Following the brush-cutting both species re-entered the mammalian secondary succession at different times, first P. gracilicaudatus followed by R. lutreolus after the vegetation cover thresholds of each species had been reached. The impact of this habitat manipulation experiment was to produce a retrogression of the small mammal succession, experimentally demonstrating causality between changes in vegetation density and subsequent small mammal habitat use. [source]


Small mammal succession is determined by vegetation density rather than time elapsed since disturbance

AUSTRAL ECOLOGY, Issue 6 2000
V. MONAMY
Abstract We examined post-fire responses of two sympatric Australian rodents, Pseudomys gracilicaudatus and Rattus lutreolus, as coastal wet heath regenerated following two high intensity wildfires. Pseudomys gracilicaudatus, an early serai-stage species, recolonized an area burnt in August 1974 after one year, but took only 3 months to recolonize another area following a wildfire in October 1994. Rattus lutreolus, a late serai-stage specialist, took approximately 3.6 years to recolonize following wildfire in August 1974, but had recolonized after only 4 months following wildfire in October 1994. We suggest that this apparent anomaly is associated with the rate of recovery of vegetation density. When the relative abundance of each species was plotted as a function of vegetation density, the trajectories following the two wildfires were concordant. An implicit relationship exists between time since wildfire and vegetation density. We make this relationship explicit by quantifying cover requirements for each species, and show that it is the resource continuum borne of regenerating vegetation (rather than time per se) that is important in determining the timing of small mammal successional sequences. [source]


Vegetation dynamics during the Younger Dryas-Holocene transition in the extreme northern taiga zone, northeastern European Russia

BOREAS, Issue 2 2006
MINNA VÄLIRANTA
Vegetation dynamics during the Younger Dryas-Holocene transition in the extreme northern taiga zone of the Usa basin, northeastern European Russia, were reconstructed using plant macrofossil and pollen evidence from a sediment core from Lake Llet-Ti. The pollen stratigraphy during the Younger Dryas (about 12 500,11 500 cal. yr BP) is characterized by pollen types indicative of treeless arctic vegetation, whereas the macrofossil evidence shows the occurrence of scattered spruce and birch trees around the lake. The Younger Dryas-early Holocene transition is characterized by a rapid increase in vegetation density, including an increase in the birch population, followed by the expansion of the spruce population at about 10 000 cal. yr BP. Dense spruce-birch forest dominated until 5000 cal. yr BP. Our results contribute to the debate about the Lateglacial environments in northern Russia, and illustrate the importance of plant macrofossil records in Lateglacial vegetation reconstructions. [source]