Thickness Variation (thickness + variation)

Distribution by Scientific Domains


Selected Abstracts


Variable alluvial sandstone architecture within the Lower Old Red Sandstone, southwest Wales

GEOLOGICAL JOURNAL, Issue 3-4 2004
Brian P. J. Williams
Abstract Sandstone bodies within the Lower Old Red Sandstone (ORS) in southern Pembrokeshire exhibit variability in architecture, sediment grade and composition both spatially and temporally. Four architectural styles are observed, namely decimetre- to metre-thick sheets, metre-thick multi-storey amalgamations, inclined-heterolithic units and ribbon geometries. Sandstone bodies in the Freshwater East Formation are sheet-like, heterolithic units several metres thick. An association with lingulids and wave ripples alludes to a marine influence, possibly estuarine tidal flats or storm washovers. Within the Moor Cliffs Formation, the most common sandstone bodies are centimetre- to metre-thick sheets with high width-to-depth ratios. Fine-grained sandstones represent sheet-flood deposition on unconfined, planar surfaces, whereas coarser-grained sandstones constitute distinctive amalgamations of discrete flood events, reflecting either a change in provenance or tectonic influence. Clear incision of coarse-grained, multi-storey units within the Inter-Tuff Moor Cliffs Formation reflects a change in relative sea-level, possibly tectonically induced. The base of the Conigar Pit Sandstone Member (CPSM) is marked by a distinctive, exotic-clast conglomerate defining the base to heterolithic, lateral-accretion bedsets and sandstone sheets. This association defines a significant influx of coarse-grained sediment post-Chapel Point Calcrete formation, an interval of presumed topographic stability across the Anglo-Welsh Basin. This influx must reflect rejuvenation of source regions, with changes in base-level reflecting either eustatic or tectonic influences. Commonly observed in the CPSM are fine-grained, inclined-heterolithic bedsets recording deposition by highly sinuous rivers with flashy discharge. Up-sequence within the CPSM are metre-thick, multi-storey amalgamations of predominatly trough cross-stratified medium- to coarse-grained sandstone. It is likely that these units are genetically related to contemporaneous decimetre-thick sandstone sheets, the latter being ,splay' events marginal to the main channel axis. The interbedding of multi-storey sandstones and fine-grained laterally accreted units reflects changes in provenance, slope and/or climate. Thickness variations within the Lower ORS detail significant thickening of all units northward into the Benton Fault. It seems likely that this thickening reflects variable accommodation space development associated with active growth along this and other WNW,ESE-trending faults, and migration of channel belts toward the footwall. Copyright © 2004 John Wiley & Sons, Ltd. [source]


Integrated Telychian (Silurian) K-bentonite chemostratigraphy and biostratigraphy in Estonia and Latvia

LETHAIA, Issue 1 2010
TARMO KIIPLI
Kiipli, T., Kallaste, T., Nestor, V. & Loydell, D.K. 2010: Integrated Telychian (Silurian) K-bentonite chemostratigraphy and biostratigraphy in Estonia and Latvia. Lethaia, Vol. 43, pp. 32,44. The distribution of altered volcanic ash layers (K-bentonites) and Telychian chitinozoans in four East Baltic drill core sections are compared. This information is integrated with graptolite and conodont biozonations to give a precise correlation chart using four different stratigraphical tools: K-bentonite-based chemostratigraphy; chitinozoan biostratigraphy; graptolite biostratigraphy; and, conodont biostratigraphy. Thickness variations in the K-bentonites suggest that the source of the volcanic ash was to the west and north-west. [source]


Effect of Cathode and Anode Voltage on an Ion Sheath Thickness in a Magnetically Confined Diffusion Plasma

CONTRIBUTIONS TO PLASMA PHYSICS, Issue 10 2007
M. Kr.
Abstract This article reports about the ion sheath thickness variation occurring in front of a negatively biased plate immersed in the target plasma region of a double plasma device. The target plasma is produced due to the local ionization of neutral gas by the high energetic electrons coming from the source region (main discharge region). It is observed that for an increase in cathode voltage (filament bias voltage) in the source region, the ion flux into the plate increases. As a result, the sheath at the plate contracts. Again, for an increase in source anode voltage (magnetic cage bias), the ion flux to the plate decreases. As a result, the sheath expands at the plate. The ion sheath formed at the separation grid of the device is found to expand for an increase in cathode voltage and it contracts for an increase in the anode voltage of the main discharge region. One important observation is that the applied anode bias can control the Bohm speed of the ions towards the separation grid. Furthermore, it is observed that the ion current collected by the separation grid is independent of changes in plasma density in the diffusion region but is highly dependent on the source plasma parameters. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


Dry film method with ytterbium as the internal standard for near infrared spectroscopic plasma glucose assay coupled with boosting support vector regression

JOURNAL OF CHEMOMETRICS, Issue 1-2 2006
Yan-Ping Zhou
Abstract A novel near infrared (NIR) spectroscopic measurement technique, dry film method, has been proposed for the determination of glucose in plasma. Rare earth element ytterbium (Yb) has been taken in the dry film method as the internal standard to compensate for the thickness variation of the dry films. This technique circumvents the interference from water absorption and requires only 50 µl of sample. Support vector regression (SVR) as a multivariate calibration method has been combined with boosting for the development of a boosting support vector regression (BSVR) method for the dry film measurement modeling. The introduction of boosting drastically enhances the performance of individual SVR model. The results show that the glucose in plasma can be determined over the 0.4,20,mmol/L concentration range with satisfactory accuracy using the dry film technique coupled with the BSVR method. Moreover, the performance of BSVR was compared favorably with that of the conventional SVR and PLS. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Modeling and analysis of thickness gradient and variations in vacuum-assisted resin transfer molding process

POLYMER COMPOSITES, Issue 5 2008
Jing Li
As vacuum-assisted resin transfer molding (VARTM) is being increasingly used in aerospace applications, the thickness gradient and variation issues are gaining more attention. Typically, thickness gradient and variations result from the infusion pressure gradient during the process and material variations. Pressure gradient is the driving force for resin flow and the main source of thickness variation. After infusion, an amount of pressure gradient is frozen into the preform, which primarily contributes to the thickness variation. This study investigates the mechanism of the thickness variation dynamic change during the infusion and relaxing/curing processes. A numerical model was developed to track the thickness change of the bagging film free surface. A time-dependent permeability model as a function of compaction pressure was incorporated into an existing resin transfer molding (RTM) code for obtaining the initial conditions for relaxing/curing process. Control volume (CV) and volume of fluid (VOF) methods were combined to solve the free surface problem. Experiments were conducted to verify the simulation results. The proposed model was illustrated with a relatively complex part. POLYM. COMPOS., 2008. © 2008 Society of Plastics Engineers [source]


Technical note: Morphometric maps of long bone shafts and dental roots for imaging topographic thickness variation

AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY, Issue 2 2010
Luca Bondioli
Abstract Qualitative and quantitative characterization through functional imaging of mineralized tissues is of potential value in the study of the odontoskeletal remains. This technique, widely developed in the medical field, allows the bi-dimensional, planar representation of some local morphometric properties, i.e., topographic thickness variation, of a three-dimensional object, such as a long bone shaft. Nonetheless, the use of morphometric maps is still limited in (paleo)anthropology, and their feasibility has not been adequately tested on fossil specimens. Using high-resolution microtomographic images, here we apply bi-dimensional virtual "unrolling" and synthetic thickness mapping techniques to compare cortical bone topographic variation across the shaft in a modern and a fossil human adult femur (the Magdalenian from Chancelade). We also test, for the first time, the possibility to virtually unroll and assess for dentine thickness variation in modern and fossil (the Neanderthal child from Roc de Marsal) human deciduous tooth roots. The analyses demonstrate the feasibility of using two-dimensional morphometric maps for the synthetic functional imaging and comparative biomechanical interpretation of cortical bone thickness variation in extant and fossil specimens and show the interest of using this technique also for the subtle characterization of root architecture and dentine topography. More specifically, our preliminary results support the use of virtual cartography as a tool for assessing to what extent internal root morphology is capable of responding to loading and directional stresses and strains in a predictable way. Am J Phys Anthropol, 2010. © 2010 Wiley-Liss, Inc. [source]


Precession electron diffraction 1: multislice simulation

ACTA CRYSTALLOGRAPHICA SECTION A, Issue 6 2006
C. S. Own
Precession electron diffraction (PED) is a method that considerably reduces dynamical effects in electron diffraction data, potentially enabling more straightforward solution of structures using the transmission electron microscope. This study focuses upon the characterization of PED data in an effort to improve the understanding of how experimental parameters affect it in order to predict favorable conditions. A method for generating simulated PED data by the multislice method is presented and tested. Data simulated for a wide range of experimental parameters are analyzed and compared to experimental data for the (Ga,In)2SnO4 (GITO) and ZSM-5 zeolite (MFI) systems. Intensity deviations between normalized simulated and kinematical data sets, which are bipolar for dynamical diffraction data, become unipolar for PED data. Three-dimensional difference plots between PED and kinematical data sets show that PED data are most kinematical for small thicknesses, and as thickness increases deviations are minimized by increasing the precession cone semi-angle ,. Lorentz geometry and multibeam dynamical effects explain why the largest deviations cluster about the transmitted beam, and one-dimensional diffraction is pointed out as a strong mechanism for deviation along systematic rows. R factors for the experimental data sets are calculated, demonstrating that PED data are less sensitive to thickness variation. This error metric was also used to determine the experimental specimen thickness. R1 (unrefined) was found to be about 12 and 15% for GITO and MFI, respectively. [source]


RESERVOIR POTENTIAL OF A LACUSTRINE MIXED CARBONATE / SILICICLASTIC GAS RESERVOIR: THE LOWER TRIASSIC ROGENSTEIN IN THE NETHERLANDS

JOURNAL OF PETROLEUM GEOLOGY, Issue 1 2008
D. Palermo
The Lower Triassic Rogenstein Member of the Buntsandstein Formation produces gas at the De Wijk and Wanneperveen fields, NE Netherlands and consists mainly of claystones with intercalated oolitic limestone beds. The excellent reservoir properties of the oolites (,= 20-30%; k = 5-4000 mD) are predominantly controlled by depositional facies. Oolitic limestones are interpreted as the storm and wave deposits of a shallow, desert lake located in the Central European Buntsandstein Basin. The vertical sequence of lithofacies in the Rogenstein Member indicates cyclic changes of relative lake level. The reservoir rock is vertically arranged in a three-fold hierarchy of cycles, recognised both in cores and wireline logs. These cycles are a key to understanding the distribution of reservoir facies, and are used as the basis for a high-resolution sequence stratigraphic correlation of the reservoir units. Slight regional-scale thickness variations of the Rogenstein Member (in the order of tens of metres) are interpreted as the effects of differential subsidence associated with the inherited Palaeozoic structural framework. The depositional basin can be subdivided into subtle palaeo-highs and -lows which controlled facies distribution during Rogenstein deposition. Oolitic limestones show their greatest lateral extent and thickest development in the Middle Rogenstein during large-scale maximum flooding. Potential reservoir rocks (decimetre to metres thick) are present in the NE Netherlands, in particular in the Lauwerszee Trough and the Lower Saxony Basin, where abundant gas shows of 200 - 4000 ppm CH4 have been recorded. Preserved primary porosity is interpreted to be a result of rapid burial in subtle depositional palaeo-lows in this area. The thickest, amalgamated oolite intervals (tens of metres thick) occur in the eastern part of the Central Netherlands Basin. Because of poor reservoir properties, other areas appear to be less promising in terms of Rogenstein exploration potential. [source]


High potential of thin (<1,µm) a-Si: H/µc-Si:H tandem solar cells

PROGRESS IN PHOTOVOLTAICS: RESEARCH & APPLICATIONS, Issue 2 2010
S. Schicho
Abstract Silicon based thin tandem solar cells were fabricated by plasma enhanced chemical vapor deposition (PECVD) in a 30,×,30,cm2 reactor. The layer thicknesses of the amorphous top cells and the microcrystalline bottom cells were significantly reduced compared to standard tandem cells that are optimized for high efficiency (typically with a total absorber layer thickness from 1.5 to 3,µm). The individual absorber layer thicknesses of the top and bottom cells were chosen so that the generated current densities are similar to each other. With such thin cells, having a total absorber layer thickness varying from 0.5 to 1.5,µm, initial efficiencies of 8.6,10.7% were achieved. The effects of thickness variations of both absorber layers on the device properties have been separately investigated. With the help of quantum efficiency (QE) measurements, we could demonstrate that by reducing the bottom cell thickness the top cell current density increased which is addressed to back-reflected light. Due to a very thin a-Si:H top cell, the thin tandem cells show a much lower degradation rate under continuous illumination at open circuit conditions compared to standard tandem and a-Si:H single junction cells. We demonstrate that thin tandem cells of around 550,nm show better stabilized efficiencies than a-Si:H and µc-Si:H single junction cells of comparable thickness. The results show the high potential of thin a-Si/µc-Si tandem cells for cost-effective photovoltaics. Copyright © 2010 John Wiley & Sons, Ltd. [source]


Giant submarine collapse of a carbonate platform at the Turonian,Coniacian transition: The Ayabacas Formation, southern Peru

BASIN RESEARCH, Issue 3 2008
Pierre Callot
ABSTRACT The Ayabacas Formation of southern Peru is an impressive unit formed by the giant submarine collapse of the mid-Cretaceous carbonate platform of the western Peru back-arc basin (WPBAB), near the Turonian,Coniacian transition (,90,89 Ma). It extends along the southwestern edge of the Cordillera Oriental and throughout the Altiplano and Cordillera Occidental over >80 000 km2 in map view, and represents a volume of displaced sediments of >10 000 km3. The collapse occurred down the basin slope, i.e. toward the SW. Six zones are characterised on the basis of deformational facies, and a seventh corresponds to the northeastern ,stable' area (Zone 0). Zones 1,3 display increasing fragmentation from NE to SW, and are composed of limestone rafts and sheets embedded in a matrix of mainly red, partly calcareous and locally sandy, mudstones to siltstones. In contrast, in Zones 4 and 5 the unit consists only of displaced and stacked limestone masses forming a ,sedimentary thrust and fold system', with sizes increasing to the southwest. In Zone 6, the upper part of the limestone succession consists of rafts and sheets stacked over the regularly bedded lower part. The triggering of this extremely large mass wasting clearly ensued from slope creation, oversteepening and seismicity produced by extensional tectonic activity, as demonstrated by the observation of synsedimentary normal faults and related thickness variations. Other factors, such as pore pressure increases or lithification contrasts probably facilitated sliding. The key role of tectonics is strengthened by the specific relationships between the basin and collapse histories and two major fault systems that cross the study area. The Ayabacas collapse occurred at a turning point in the Central Andean evolution. Before the event, the back-arc basin had been essentially marine and deepened to the west, with little volcanic activity taking place at the arc. After the event, the back-arc was occupied by continental to near-continental environments, and was bounded to the southwest by a massive volcanic arc shedding debris and tuffs into the basin. [source]


Evolution of the late Cenozoic Chaco foreland basin, Southern Bolivia

BASIN RESEARCH, Issue 2 2006
Cornelius Eji Uba
ABSTRACT Eastward Andean orogenic growth since the late Oligocene led to variable crustal loading, flexural subsidence and foreland basin sedimentation in the Chaco basin. To understand the interaction between Andean tectonics and contemporaneous foreland development, we analyse stratigraphic, sedimentologic and seismic data from the Subandean Belt and the Chaco Basin. The structural features provide a mechanism for transferring zones of deposition, subsidence and uplift. These can be reconstructed based on regional distribution of clastic sequences. Isopach maps, combined with sedimentary architecture analysis, establish systematic thickness variations, facies changes and depositional styles. The foreland basin consists of five stratigraphic successions controlled by Andean orogenic episodes and climate: (1) the foreland basin sequence commences between ,27 and 14 Ma with the regionally unconformable, thin, easterly sourced fluvial Petaca strata. It represents a significant time interval of low sediment accumulation in a forebulge-backbulge depocentre. (2) The overlying ,14,7 Ma-old Yecua Formation, deposited in marine, fluvial and lacustrine settings, represents increased subsidence rates from thrust-belt loading outpacing sedimentation rates. It marks the onset of active deformation and the underfilled stage of the foreland basin in a distal foredeep. (3) The overlying ,7,6 Ma-old, westerly sourced Tariquia Formation indicates a relatively high accommodation and sediment supply concomitant with the onset of deposition of Andean-derived sediment in the medial-foredeep depocentre on a distal fluvial megafan. Progradation of syntectonic, wedge-shaped, westerly sourced, thickening- and coarsening-upward clastics of the (4) ,6,2.1 Ma-old Guandacay and (5) ,2.1 Ma-to-Recent Emborozú Formations represent the propagation of the deformation front in the present Subandean Zone, thereby indicating selective trapping of coarse sediments in the proximal foredeep and wedge-top depocentres, respectively. Overall, the late Cenozoic stratigraphic intervals record the easterly propagation of the deformation front and foreland depocentre in response to loading and flexure by the growing Intra- and Subandean fold-and-thrust belt. [source]