Species Divergence (species + divergence)

Distribution by Scientific Domains


Selected Abstracts


Population and Species Divergence of Chemical Cues that Influence Male Recognition of Females in Desmognathine Salamanders

ETHOLOGY, Issue 7 2003
Paul Verrell
Growing evidence indicates that males may be more discriminating of mating partners than often has been assumed. In the North American Ocoee dusky salamander, Desmognathus ocoee (Plethodontidae: Desmognathinae), sexual incompatibility among conspecific populations is high in encounters staged in the laboratory, at least in part because males fail to recognize ,other' females as appropriate targets for courtship. I used Y-mazes to test the hypothesis that males of D. ocoee discriminate between substrate-borne chemical cues produced by ,own' (homotypic) and ,other' (heterotypic) females. Males of four populations discriminated in favor of substrates soiled by homotypic females over clean (control) substrates (expt 1), suggesting that females produce chemical cues of sociosexual significance to males. Furthermore, males from these populations discriminated in favor of substrates soiled by homotypic females vs. substrates soiled by heterotypic females (expt 2), both conspecific and heterospecific (D. carolinensis and D. orestes). Thus, differences among populations and species in female chemical cues appear to affect the chemotactic responses of males. I suggest that, together with differences in behavioral signals and responses exhibited during courtship, differences in female chemical cues likely contribute to sexual incompatibility among populations and taxa of desmognathine salamanders. [source]


ESTIMATING A GEOGRAPHICALLY EXPLICIT MODEL OF POPULATION DIVERGENCE

EVOLUTION, Issue 3 2007
L. Lacey Knowles
Patterns of genetic variation can provide valuable insights for deciphering the relative roles of different evolutionary processes in species differentiation. However, population-genetic models for studying divergence in geographically structured species are generally lacking. Since these are the biogeographic settings where genetic drift is expected to predominate, not only are population-genetic tests of hypotheses in geographically structured species constrained, but generalizations about the evolutionary processes that promote species divergence may also be potentially biased. Here we estimate a population-divergence model in montane grasshoppers from the sky islands of the Rocky Mountains. Because this region was directly impacted by Pleistocene glaciation, both the displacement into glacial refugia and recolonization of montane habitats may contribute to differentiation. Building on the tradition of using information from the genealogical relationships of alleles to infer the geography of divergence, here the additional consideration of the process of gene-lineage sorting is used to obtain a quantitative estimate of population relationships and historical associations (i.e., a population tree) from the gene trees of five anonymous nuclear loci and one mitochondrial locus in the broadly distributed species Melanoplus oregonensis. Three different approaches are used to estimate a model of population divergence; this comparison allows us to evaluate specific methodological assumptions that influence the estimated history of divergence. A model of population divergence was identified that significantly fits the data better compared to the other approaches, based on per-site likelihood scores of the multiple loci, and that provides clues about how divergence proceeded in M. oregonensis during the dynamic Pleistocene. Unlike the approaches that either considered only the most recent coalescence (i.e., information from a single individual per population) or did not consider the pattern of coalescence in the gene genealogies, the population-divergence model that best fits the data was estimated by considering the pattern of gene lineage coalescence across multiple individuals, as well as loci. These results indicate that sampling of multiple individuals per population is critical to obtaining an accurate estimate of the history of divergence so that the signal of common ancestry can be separated from the confounding influence of gene flow,even though estimates suggest that gene flow is not a predominant factor structuring patterns of genetic variation across these sky island populations. They also suggest that the gene genealogies contain information about population relationships, despite the lack of complete sorting of gene lineages. What emerges from the analyses is a model of population divergence that incorporates both contemporary distributions and historical associations, and shows a latitudinal and regional structuring of populations reminiscent of population displacements into multiple glacial refugia. Because the population-divergence model itself is built upon the specific events shaping the history of M. oregonensis, it provides a framework for estimating additional population-genetic parameters relevant to understanding the processes governing differentiation in geographically structured species and avoids the problems of relying on overly simplified and inaccurate divergence models. The utility of these approaches, as well as the caveats and future improvements, for estimating population relationships and historical associations relevant to genetic analyses of geographically structured species are discussed. [source]


FROM MICRO- TO MACROEVOLUTION THROUGH QUANTITATIVE GENETIC VARIATION: POSITIVE EVIDENCE FROM FIELD CRICKETS

EVOLUTION, Issue 10 2004
Mattieu Bégin
Abstract . -Quantitative genetics has been introduced to evolutionary biologists with the suggestion that microevolution could be directly linked to macroevolutionary patterns using, among other parameters, the additive genetic variance/ covariance matrix (G) which is a statistical representation of genetic constraints to evolution. However, little is known concerning the rate and pattern of evolution of G in nature, and it is uncertain whether the constraining effect of G is important over evolutionary time scales. To address these issues, seven species of field crickets from the genera Gryllus and Teleogryllus were reared in the laboratory, and quantitative genetic parameters for morphological traits were estimated from each of them using a nested full-sibling family design. We used three statistical approaches (T method, Flury hierarchy, and Mantel test) to compare G matrices or genetic correlation matrices in a phylogenetic framework. Results showed that G matrices were generally similar across species, with occasional differences between some species. We suggest that G has evolved at a low rate, a conclusion strengthened by the consideration that part of the observed across-species variation in G can be explained by the effect of a genotype by environment interaction. The observed pattern of G matrix variation between species could not be predicted by either morphological trait values or phylogeny. The constraint hypothesis was tested by comparing the multivariate orientation of the reconstructed ancestral G matrix to the orientation of the across-species divergence matrix (D matrix, based on mean trait values). The D matrix mainly revealed divergence in size and, to a much smaller extent, in a shape component related to the ovipositor length. This pattern of species divergence was found to be predictable from the ancestral G matrix in agreement with the expectation of the constraint hypothesis. Overall, these results suggest that the G matrix seems to have an influence on species divergence, and that macroevolution can be predicted, at least qualitatively, from quantitative genetic theory. Alternative explanations are discussed. [source]


Comparative phylogeography of pitvipers suggests a consensus of ancient Middle American highland biogeography

JOURNAL OF BIOGEOGRAPHY, Issue 1 2009
Todd A. Castoe
Abstract Aim, We used inferences of phylogenetic relationships and divergence times for three lineages of highland pitvipers to identify broad-scale historical events that have shaped the evolutionary history of Middle American highland taxa, and to test previous hypotheses of Neotropical speciation. Location, Middle America (Central America and Mexico). Methods, We used 2306 base pairs of mitochondrial gene sequences from 178 individuals to estimate the phylogeny and divergence times of New World pitviper lineages, focusing on three genera (Atropoides, Bothriechis and Cerrophidion) that are broadly co-distributed across Middle American highlands. Results, We found strong correspondence across three highland lineages for temporally and geographically coincident divergences in the Miocene and Pliocene, and further identified widespread within-species divergences across multiple lineages that occurred in the early,middle Pleistocene. Main conclusions, Available data suggest that there were at least three major historical events in Middle America that had broad impacts on species divergence and lineage diversification among highland taxa. In addition, we find widespread within-species genetic structure that may be attributable to the climatic changes that affected gene flow among highland taxa during the middle,late Pleistocene. [source]


Ecological selection against hybrids in natural populations of sympatric threespine sticklebacks

JOURNAL OF EVOLUTIONARY BIOLOGY, Issue 6 2007
J. L. GOW
Abstract Experimental work has provided evidence for extrinsic post-zygotic isolation, a phenomenon unique to ecological speciation. The role that ecological components to reduced hybrid fitness play in promoting speciation and maintaining species integrity in the wild, however, is not as well understood. We addressed this problem by testing for selection against naturally occurring hybrids in two sympatric species pairs of benthic and limnetic threespine sticklebacks (Gasterosteus aculeatus). If post-zygotic isolation is a significant reproductive barrier, the relative frequency of hybrids within a population should decline significantly across the life-cycle. Such a trend in a natural population would give independent support to experimental evidence for extrinsic, rather than intrinsic, post-zygotic isolation in this system. Indeed, tracing mean individual hybridity (genetic intermediateness) across three life-history stages spanning four generations revealed just such a decline. This provides compelling evidence that extrinsic selection plays an important role in maintaining species divergence and supports a role for ecological speciation in sticklebacks. [source]


Genome-wide analysis of alternative splicing evolution among Mus subspecies

MOLECULAR ECOLOGY, Issue 2010
BETTINA HARR
Abstract Alternative splicing, the combination of different exons to produce a variety of transcripts from a single gene, contributes enormously to transcriptome diversity in mammals, and the majority of genes encode alternatively spliced products. Previous research comparing mouse, rat and human has shown that a significant proportion of splice forms are not conserved across species, suggesting that alternative transcripts are an important source of evolutionary novelty. Here, we studied the evolution of alternative splicing in the early stages of species divergence in the house mouse. We sequenced the testis transcriptomes of three Mus musculus subspecies and Mus spretus using Illumina technology. On the basis of a genome-wide analysis of read coverage differences among subspecies, we identified several hundred candidate alternatively spliced regions. We conservatively estimate that 6.5% of testis-expressed genes show alternative splice differences between at least one pair of M. musculus subspecies, a proportion slightly higher than the proportion of genes differentially expressed among subspecies. These results suggest that differences in both the structure and abundance of transcripts contribute to early transcriptome divergence. [source]


Shifting distributions and speciation: species divergence during rapid climate change

MOLECULAR ECOLOGY, Issue 3 2007
BRYAN C. CARSTENS
Abstract Questions about how shifting distributions contribute to species diversification remain virtually without answer, even though rapid climate change during the Pleistocene clearly impacted genetic variation within many species. One factor that has prevented this question from being adequately addressed is the lack of precision associated with estimates of species divergence made from a single genetic locus and without incorporating processes that are biologically important as populations diverge. Analysis of DNA sequences from multiple variable loci in a coalescent framework that (i) corrects for gene divergence pre-dating speciation, and (ii) derives divergence-time estimates without making a priori assumptions about the processes underlying patterns of incomplete lineage sorting between species (i.e. allows for the possibility of gene flow during speciation), is critical to overcoming the inherent logistical and analytical difficulties of inferring the timing and mode of speciation during the dynamic Pleistocene. Estimates of species divergence that ignore these processes, use single locus data, or do both can dramatically overestimate species divergence. For example, using a coalescent approach with data from six loci, the divergence between two species of montane Melanoplus grasshoppers is estimated at between 200 000 and 300 000 years before present, far more recently than divergence estimates made using single-locus data or without the incorporation of population-level processes. Melanoplus grasshoppers radiated in the sky islands of the Rocky Mountains, and the analysis of divergence between these species suggests that the isolation of populations in multiple glacial refugia was an important factor in promoting speciation. Furthermore, the low estimates of gene flow between the species indicate that reproductive isolation must have evolved rapidly for the incipient species boundaries to be maintained through the subsequent glacial periods and shifts in species distributions. [source]


Variation within and among species in gene expression: raw material for evolution

MOLECULAR ECOLOGY, Issue 5 2006
ANDREW WHITEHEAD
Abstract Heritable variation in regulatory or coding regions is the raw material for evolutionary processes. The advent of microarrays has recently promoted examination of the extent of variation in gene expression within and among taxa and examination of the evolutionary processes affecting variation. This review examines these issues. We find: (i) microarray-based measures of gene expression are precise given appropriate experimental design; (ii) there is large inter-individual variation, which is composed of a minor nongenetic component and a large heritable component; (iii) variation among populations and species appears to be affected primarily by neutral drift and stabilizing selection, and to a lesser degree by directional selection; and (iv) neutral evolutionary divergence in gene expression becomes nonlinear with greater divergence times due to functional constraint. Evolutionary analyses of gene expression reviewed here provide unique insights into partitioning of regulatory variation in nature. However, common limitations of these studies include the tendency to assume a linear relationship between expression divergence and species divergence, and failure to test explicit hypotheses that involve the ecological context of evolutionary divergence. [source]