Spatial Grain (spatial + grain)

Distribution by Scientific Domains

Selected Abstracts

Topographic spatial characterisation of grey seal Halichoerus grypus breeding habitat at a sub-seal size spatial grain

ECOGRAPHY, Issue 3 2001
S. D. Twiss
Expansion within breeding colonies may critically depend upon the availability of suitable breeding habitat. Here we use topographic modelling in a GIS to characterise suitable pupping habitat and accurately predict the pattern of colonisation in an expanding grey seal breeding colony-the Isle of May (Scotland), We use high resolution images from large format aerial photographs of the colony to generate sub-metre accurate Digital Terrain Models (DTMs), GIS modelling with these DTMs provides topographic measures of elevation, slope and ease of access to sea and freshwater pools at a 2 m grid cell size. Seal locations during the 1994 breeding season, with sex-age class, were also digitised from the same images. We examine how the physical attributes of cells (locations) with and without pups differ and identify areas suitable for pupping but remaining unoccupied during 1994. We predict patterns of future colonisation by characterising areas differentiated by the densities of pups within 5 m grid cells and identifying areas, both occupied or unoccupied, with a potential for increased future pupping densities. Our predictions were tested by examining pup distributions observed in the 1998 breeding season. Occupied sites were significantly closer to freshwater pools and access to the sea (p < 0.001) than unoccupied sites suggesting that proximity to water may restrict colony expansion before all areas of suitably flat terrain are occupied. All pup density classes occurred in sites with similar slope values and distance to pools. However, higher pupping densities occurred closer to access points (p = 0.014). Pup densities observed in 1998 revealed that our 1994 predictions were accurate (p < 0.0001). Only 12% of 466 grid cells had higher densities in 1998 than predicted, of which 88% differed by only 1 pup. These incorrectly classified cells occurred at the expanding edge of the colony (in a more topographically homogenous area) and at the main access points from the sea (major traffic zones). These results demonstrate the value of the accurate quantification of topographic parameters at the appropriate spatial grain (in this case below the size of the individual) for use in habitat classification and predictions of habitat utilization. [source]

The role of spatial scale and the perception of large-scale species-richness patterns

Carsten Rahbek
Abstract Despite two centuries of exploration, our understanding of factors determining the distribution of life on Earth is in many ways still in its infancy. Much of the disagreement about governing processes of variation in species richness may be the result of differences in our perception of species-richness patterns. Until recently, most studies of large-scale species-richness patterns assumed implicitly that patterns and mechanisms were scale invariant. Illustrated with examples and a quantitative analysis of published data on altitudinal gradients of species richness (n = 204), this review discusses how scale effects (extent and grain size) can influence our perception of patterns and processes. For example, a hump-shaped altitudinal species-richness pattern is the most typical (c. 50%), with a monotonic decreasing pattern (c. 25%) also frequently reported, but the relative distribution of patterns changes readily with spatial grain and extent. If we are to attribute relative impact to various factors influencing species richness and distribution and to decide at which point along a spatial and temporal continuum they act, we should not ask only how results vary as a function of scale but also search for consistent patterns in these scale effects. The review concludes with suggestions of potential routes for future analytical exploration of species-richness patterns. [source]

Using GIS to relate small mammal abundance and landscape structure at multiple spatial extents: the northern flying squirrel in Alberta, Canada

Summary 1It is common practice to evaluate the potential effects of management scenarios on animal populations using geographical information systems (GIS) that relate proximate landscape structure or general habitat types to indices of animal abundance. Implicit in this approach is that the animal population responds to landscape features at the spatial grain and extent represented in available digital map inventories. 2The northern flying squirrel Glaucomys sabrinus is of particular interest in North American forest management because it is known from the Pacific North-West as a habitat specialist, a keystone species of old-growth coniferous forest and an important disperser of hypogeous, mycorrhizal fungal spores. Using a GIS approach we tested whether the relative abundance of flying squirrel in northern Alberta, Canada, is related to old forest, conifer forest and relevant landscape features as quantified from management-based digital forest inventories. 3We related squirrel abundance, estimated through live trapping, to habitat type (forest composition: conifer, mixed-wood and deciduous) and landscape structure (stand height, stand age, stand heterogeneity and anthropogenic disturbance) at three spatial extents (50 m, 150 m and 300 m) around each site. 4Relative abundances of northern flying squirrel populations in northern and western Alberta were similar to those previously reported from other regions of North America. Capture rates were variable among sites, but showed no trends with respect to year or provincial natural region (foothills vs. boreal). 5Average flying squirrel abundance was similar in all habitats, with increased values within mixed-wood stands at large spatial extents (300 m) and within deciduous-dominated stands at smaller spatial extents (50 m). No relationship was found between squirrel abundance and conifer composition or stand age at any spatial extent. 6None of the landscape variables calculated from GIS forest inventories predicted squirrel abundance at the 50-m or 150-m spatial extents. However, at the 300-m spatial extent we found a negative, significant relationship between average stand height and squirrel abundance. 7Synthesis and applications. Boreal and foothill populations of northern flying squirrel in Canada appear unrelated to landscape composition at the relatively large spatial resolutions characteristic of resource inventory data commonly used for management and planning in these regions. Flying squirrel populations do not appear clearly associated with old-aged or conifer forests; rather, they appear as habitat generalists. This study suggests that northern, interior populations of northern flying squirrel are probably more related to stand-level components of forest structure, such as food, microclimate (e.g. moisture) and understorey complexity, variables not commonly available in large-scale digital map inventories. We conclude that the available digital habitat data potentially exclude relevant, spatially dependent information and could be used inappropriately for predicting the abundance of some species in management decision making. [source]