Slow Kinetics (slow + kinetics)

Distribution by Scientific Domains

Selected Abstracts

Enhancement of Anodic Response for DMSO at Ruthenium Oxide Film Electrodes as a Result of Doping with Iron(III)

Abstract The oxidation of dimethyl sulfoxide (DMSO) to dimethyl sulfone (DMSO2) is representative of numerous anodic oxygen-transfer reactions of organosulfur compounds that suffer from slow kinetics at noble metal electrodes. Anodic voltammetric data for DMSO are examined at various RuO2 -film electrodes prepared by thermal deposition on titanium substrates. The response for DMSO is slightly larger at RuO2 films prepared in a flame as compared with films prepared in a furnace; however, temperature is more easily controlled in the furnace. Doping of the RuO2 films with Fe(III) further improves the sensitivity of anodic response for DMSO. Optimal response is obtained at an Fe(III)-doped RuO2 -film electrode prepared using a deposition solution of 50,mM RuCl3 and 10,mM FeCl3 in a 1,:,1 mixture of isopropanol and 12,M HCl at an annealing temperature of 450,C. The Levich plot (i vs. ,1/2) and Koutecky-Levich plot (1/i vs. 1/,1/2) of amperometric data for the oxidation of DMSO at an Fe(III)-doped RuO2 -film electrode configured as a rotated disk are consistent with an anodic response controlled by mass-transport processes at low rotational velocities. Flow injection data demonstrate that Fe(III)-doped RuO2 -film electrodes exhibit detection capability for methionine and cysteine in addition to DMSO. Detection limits for 100-,L injections of the three compounds are ca. 3.210,4,mM, i.e., ca. 32,pmol. [source]

Molecularly imprinted polymers as a tool for separation in CEC

Zhao-Sheng Liu Dr.
Abstract Molecularly imprinted polymers (MIPs) are synthesized in the presence of a template which results in the formation of specific recognition cavities complementary to the template in shape and chemical functionality. One of the most successful application areas of MIPs is chromatographic sorbents, which are tailor-made synthetic polymers for a given analyte. However, low efficiency of MIP columns is often observed because of slow kinetics of the template. CEC-based MIPs are thought to improve efficiency of MIP-based separation due to the enhanced flow dynamics of CEC. Another attractive feature is the miniaturized format of CEC, so that fewer templates or monomers for the molecular imprinting are consumed, a characteristic desired for ,green chemistry'. The small dimensions of a capillary demand the development of novel polymer formats that can be applied to a miniaturized system. This review discusses the various formats, i.e., the micro- or nanoparticle, the coating and the monolith, for application in CEC as well as the use in MIP syntheses and characteristics. [source]

Presynaptic source of quantal size variability at GABAergic synapses in rat hippocampal neurons in culture

Andrea Barberis
Abstract The variability of quantal size depends on both presynaptic (profile of the neurotransmitter concentration in the cleft) and postsynaptic (number and gating properties of postsynaptic receptors) factors. Here we have examined the possibility that at nonsaturated synapses in cultured hippocampal neurons, changes in both the transmitter concentration peak and its clearance from the synaptic cleft may influence the variability of spontaneous miniature synaptic GABAergic currents (mIPSCs). We found that, in contrast to the slow-off GABAA receptor antagonist bicuculline, fast-off competitive antagonists such as SR-95103 and TPMPA differentially blocked small and large mIPSCs. In the presence of flurazepam, a drug believed to increase the affinity of GABA for GABAAR, small mIPSCs were enhanced more efficiently than large events. Moreover, the addition of dextran, which increases the viscosity of the extracellular fluid, preferentially increased small mIPSCs with respect to large ones. These observations suggest that changes in the concentration peak and the speed of GABA clearance in the cleft may be an important source of synaptic variability. The study of the correlation between peak amplitude and kinetics of mIPSCs allowed determination of the relative contribution of transmitter peak concentration vs. time of GABA clearance. Small synaptic responses were associated with fast onset and decay kinetics while large amplitude currents were asociated with slow kinetics, indicating a crucial role for GABA synaptic clearance in variability of mIPSCs. By using model simulations we were able to estimate the range of variability of both the concentration and the speed of clearance of the GABA transient in the synaptic cleft. [source]

Identification of phospholipids as new components that assist in the in vitro trimerization of a bacterial pore protein

FEBS JOURNAL, Issue 3 2001
Hans De Cock
The in vitro trimerization of folded monomers of the bacterial pore protein PhoE, into its native-like, heat- and SDS-stable form requires incubations with isolated cell envelopes and Triton X-100. The possibility that membranes could be isolated that are enriched in assembly factors required for assembly of the pore protein was now investigated. Fractionation of total cell envelopes of Escherichia coli via various techniques indeed revealed the existence of membrane fractions with different capacities to support assembly in vitro. Fractions containing mainly inner membrane vesicles supported the formation of trimers that were associated with these membrane vesicles. However, only a proportion of these trimers were heat- and SDS-stable and these were formed with slow kinetics. In contrast, fractions containing mainly outer membrane vesicles supported formation of high amounts of heat-stable trimers with fast kinetics. We identified phospholipids as active assembly components in these membranes that support trimerization of folded monomers in a process with similar characteristics as observed with inner membrane vesicles. Furthermore, phospholipids strongly stimulate the kinetics of trimerization and increase the final yield of heat-stable trimers in the context of outer membranes. We propose that lipopolysaccharides stabilize the assembly competent state of folded monomers as a lipochaperone. Phospholipids are involved in converting the folded monomer into new assembly competent intermediate with a short half-life that will form heat-stable trimers most efficiently in the context of outer membrane vesicles. These results provide biochemical evidence for the involvement of different lipidic components at distinct stages of the porin assembly process. [source]

Influence of Point-Defect Reaction Kinetics on the Lattice Parameter of Ce0.8Gd0.2O1.9

Anna Kossoy
Abstract The kinetics of point-defect association/dissociation reactions in Ce0.8Gd0.2O1.9 and their influence on the crystal lattice parameter are investigated by monitoring thermally induced stress and strain in substrate- and self-supported thin films. It is found that, in the temperature range of 100,180,C, the lattice parameter of the substrate-supported films and the lateral dimensions of annealed, self-supported films both exhibit a hysteretic behavior consistent with dissociation/association of oxygen vacancy,aliovalent dopant complexes. This leads to strong deviation from linear elastic behavior, denoted in the authors' previous work as the "chemical strain" effect. At room temperature, the equilibrium state of the point defects is reached within a few months. During this period, the lattice parameter of the substrate-supported films spontaneously increases, while the self-supported films are observed to transform from the flat to the buckled state, indicating that formation of the dopant,vacancy complex is associated with a volume increase. The unexpectedly slow kinetics of establishing the defect equilibrium at room temperature can explain the fact that, depending on the sample history, the "observable" lattice parameters of Ce0.8Gd0.2O1.9, as reported in the literature, may differ from one another by a few tenths of a percent. These findings strongly suggest that the lattice parameter of the materials with a large concentration of interacting point defects is a strong function of time and material preparation route. [source]

Lithium-Catalyzed Dehydrogenation of Ammonia Borane within Mesoporous Carbon Framework for Chemical Hydrogen Storage

Li Li
Abstract Ammonia borane (AB) has attracted tremendous interest for on-board hydrogen storage due to its low molecular weight and high gravimetric hydrogen capacity below a moderate temperature. However, the slow kinetics, irreversibility, and formation of volatile materials (trace borazine and ammonia) limit its practical application. In this paper, a new catalytic strategy involved lithium (Li) catalysis and nanostructure confinement in mesoporous carbon (CMK-3) for the thermal decomposition of AB is developed. AB loaded on the 5% Li/CMK-3 framework releases ,7,wt % of hydrogen at a very low temperature (around 60,C) and entirely suppresses borazine and ammonia emissions that are harmful for proton exchange membrane fuel cells. The possible mechanism for enhanced hydrogen release via catalyzed thermal decomposition of AB is discussed. [source]

Effects of hydrogen peroxide on light emission by various strains of marine luminescent bacteria

Andrey M. Katsev
Light-emitting bacteria are the most abundant and widespread luminescent organisms. Most species of such bacteria live in marine environments. However, until recently, biological role of bacterial luminescence remained unknown. Recent studies indicated that light produced in bacterial cells may stimulate DNA repair. Therefore, it is not surprising that agents that cause DNA damage induce expression of lux genes. Moreover, it was proposed previously that bacterial luciferases may be involved in detoxification of reactive oxygen species. Recently, this hypothesis was confirmed experimentally. Here we investigated effects of hydrogen peroxide on light emission by various strains of luminescent bacteria. We found that luminescence of strains with luciferase of fast kinetics of reaction decreased at considerably lower concentrations of H2O2 than that of strains with luciferase of the slow kinetics. The action (either direct or indirect) of luciferases as anti-oxidants seemed to be independent of activity of catalase, which was found to be different in various strains. Therefore, it seems that luciferases of the slow kinetics are more efficient in detoxification of reactive oxygen species than those of the fast kinetics. ( 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]

Clearance of serum HBsAg and anti-HBs seroconversion following antiviral therapy for chronic hepatitis B

Olivier Borgniet
Abstract In this study, we have analyzed the evolution of serum HBsAg levels in 16 patients with chronic hepatitis B who showed an HBsAg seroconversion following antiviral therapy. The data showed that the clearance of serum HBsAg is slower than that of serum HBV DNA, which may reflect a slow kinetics of clearance of infected hepatocytes. Interestingly, HBsAg was detectable for a longer time using the Architect assay than with the Bio-Rad assay. As viremia suppression is achieved in most patients under therapy with the new generation of nucleoside analogs, these data suggest that the quantitative monitoring of serum HBsAg may represent a novel tool for the assessment of antiviral therapy efficacy. J. Med. Virol. 81:1336,1342, 2009. 2009 Wiley-Liss, Inc. [source]

Reaction-limited aggregation in presence of short-range structural forces

AICHE JOURNAL, Issue 4 2005
Venkataramana Runkana
Abstract A geometrically discretized sectional population balance model for reaction-limited aggregation of colloidal suspensions is presented. The two important model parameters are collision frequency factor and collision efficiency factor. The collision frequency factor is derived from physically realistic arguments proposed for collision of fractal aggregates. The collision efficiency factor is computed as a function of total interaction energy between particles, including short-range structural repulsion forces. The irregular and open structure of aggregates is taken into account by incorporating their mass fractal dimension. The characteristic time constant of reaction-limited aggregation, derived from dynamic scaling of mean aggregate size-aggregation time data, is found to correlate with electrolyte concentration. The population balance model is tested with published experimental data for aggregation of ,-alumina suspensions in the presence of different electrolytes. It is shown that the slow kinetics of aggregation under certain conditions of pH and electrolyte concentration require inclusion of short-range structural repulsion forces along with van der Waals attraction and electrical double layer repulsion forces in an extended DLVO theory. The model predictions are in good agreement with experimental data for time evolution of mean aggregate diameter in the reaction-limited aggregation regime. 2005 American Institute of Chemical Engineers AIChE J, 2005 [source]

Determination of binding constants and stoichiometries for platinum anticancer drugs and serum transport proteins by capillary electrophoresis using the Hummel-Dreyer method

Alexander V. Rudnev
Abstract A CE method has been developed to evidence and quantitatively characterize the interaction between platinum-based antitumor drugs and human serum proteins. This method is a variant of affinity CE modified regarding both experimental setup and data treatment so as to measure the peaks (or vacancies) that correspond to the bound drug when it slowly binds to the protein. Using the formalism of the Hummel-Dreyer method and cisplatin and oxaliplatin as test compounds, a protocol for determining albumin and transferrin binding constants and stoichiometries, including (and distinguished by) 48 hours of incubation of the reaction mixture, was elaborated. Relative affinities of drugs toward different proteins in aqueous solution at physiological pH, chloride concentration, and temperature were compared in terms of overall binding constants and numbers of drug molecules attached to the protein. The results indicate that both platinum drugs bind to albumin more strongly than to transferrin, supporting the concept that the albumin fraction is a major drug supply route for chemotherapeutical needs. From a comparison with the binding parameters measured previously for cisplatin by other methods, conclusions were drawn about the validity of CE as a simple and convenient method for assaying protein-drug reactions with slow kinetics. [source]

Staphylococcus aureus primase has higher initiation specificity, interacts with single-stranded DNA stronger, but is less stimulated by its helicase than Escherichia coli primase

Scott A. Koepsell
Summary The study of primases from model organisms such as Escherichia coli, phage T7 and phage T4 has demonstrated the essential nature of primase function, which is to generate de novo RNA polymers to prime DNA polymerase. However, little is known about the function of primases from other eubacteria. Their overall low primary sequence homology may result in functional differences. To help understand which primase functions were conserved, primase and its replication partner helicase from the pathogenic Gram-positive bacteria Staphylococcus aureus were compared in detail with that of E. coli primase and helicase. The conserved properties were to primer initiation and elongation and included slow kinetics, low fidelity and poor sugar specificity. The significant differences included S. aureus primase having sixfold higher kinetic affinity for its template than E. coli primase under equivalent conditions. This naturally higher activity was balanced by its fourfold lower stimulation by its replication fork helicase compared with E. coli primase. The most significant difference between the two primases was that S. aureus helicase stimulation did not broaden the S. aureus primase initiation specificity, which has important biological implications. [source]

Unusual Photoinduced Response of mTHPC Liposomal Formulation (Foslip)

Dzmitry Kachatkou
Liposomal formulations of meso-tetra(hydroxyphenyl)chlorin (mTHPC) have already been proposed with the aim to optimize photodynamic therapy. Spectral modifications of these compounds upon irradiation have not yet been investigated. The objective of this study was to evaluate photobleaching properties of mTHPC encapsulated into dipalmitoylphosphatidylcholine (DPPC) liposomes, Foslip. Fluorescence measurements in DPPC liposomes with different DPPC:mTHPC ratios demonstrated a dramatic decrease in fluorescence anisotropy with increasing local mTHPC concentration, thus suggesting strong interactions between mTHPC molecules in lipid bulk medium. Exposure of Foslip suspensions to small light doses (<50 mJ/cm2) resulted in a substantial drop in fluorescence, which, however, was restored after addition to the sample of a non-ionic surfactant Triton X-100. We attributed this behavior to photoinduced fluorescence quenching. This effect depended strongly on the molar DPPC:mTHPC ratio and was revealed only for high local mTHPC concentrations. The results were interpreted supposing energy migration between closely located mTHPC molecules with its subsequent dissipation by the molecules of photoproduct acting as excitation energy traps. We further assessed the effect of photoinduced quenching in plasma protein solution. Relatively slow kinetics of photoinduced Foslip response during incubation in the presence of proteins was attributed to mTHPC redistribution from liposomal formulations to proteins. Therefore, changes in mTHPC distribution pattern in biological systems would be consistent with changes in photoinduced quenching and would provide valuable information on mTHPC interactions with a biological environment. [source]

Spontaneous IPSCs and glycine receptors with slow kinetics in wide-field amacrine cells in the mature rat retina

Margaret Lin Veruki
The functional properties of glycine receptors were analysed in different types of wide-field amacrine cells, narrowly stratifying cells considered to play a role in larger-scale integration across the retina. The patch-clamp technique was used to record spontaneous IPSCs (spIPSCs) and glycine-evoked patch responses from mature rat retinal slices (4,7 weeks postnatal). Glycinergic spIPSCs were blocked reversibly by strychnine (300 nm). Compared to previously described spIPSCs in AII amacrine cells, the spIPSCs in wide-field amacrine cells displayed a very slow decay time course (,fast, 15 ms; ,slow, 57 ms). The kinetic properties of spIPSCs in whole-cell recordings were paralleled by even slower deactivation kinetics of responses evoked by brief pulses of glycine (3 mm) to outside-out patches from wide-field amacrine cells (,fast, 45 ms; ,slow, 350 ms). Non-stationary noise analysis of patch responses and spIPSCs yielded similar average single-channel conductances (,31 and ,34 pS, respectively). Similar, as well as both lower- and higher-conductance levels could be identified from directly observed single-channel gating during the decay phase of spIPSCs and patch responses. These results suggest that the slow glycinergic spIPSCs in wide-field amacrine cells involve ,2, heteromeric receptors. Taken together with previous work, the kinetic properties of glycine receptors in different types of amacrine cells display a considerable range that is probably a direct consequence of differential expression of receptor subunits. Unique kinetic properties are likely to differentially shape the glycinergic input to different types of amacrine cells and thereby contribute to distinct integrative properties among these cells. [source]

Non-prostanoid prostacyclin mimetics as neuronal stimulants in the rat: comparison of vagus nerve and NANC innervation of the colon

John A Rudd
The spontaneous activity of the rat isolated colon is suppressed by prostacyclin analogues such as cicaprost (IC50=4.0 nM). Activation of prostanoid IP1 -receptors located on NANC inhibitory neurones is involved. However, several non-prostanoids, which show medium to high IP1 agonist potency on platelet and vascular preparations, exhibit very weak inhibitory activity on the colon. The aim of the study was to investigate this discrepancy. Firstly, we have demonstrated the very high depolarizing potency of cicaprost on the rat isolated vagus nerve (EC50=0.23 nM). Iloprost, taprostene and carbacyclin were 7.9, 66, and 81 fold less potent than cicaprost, indicating the presence of IP1 as opposed to IP2 -receptors. Three non-prostanoid prostacyclin mimetics, BMY 45778, BMY 42393 and ONO-1301, although much less potent than cicaprost (195, 990 and 1660 fold respectively), behaved as full agonists on the vagus nerve. On re-investigating the rat colon, we found that BMY 45778 (0.1,3 ,M), BMY 42393 (3 ,M) and ONO-1301 (3 ,M) behaved as specific IP1 partial agonists, but their actions required 30,60 min to reach steady-state and only slowly reversed on washing. This profile contrasted sharply with the rapid and readily reversible contractions elicited by a related non-prostanoid ONO-AP-324, which is an EP3 -receptor agonist. The full versus partial agonism of the non-prostanoid prostacyclin mimetics may be explained by the markedly different IP1 agonist sensitivities of the two rat neuronal preparations. However, the slow kinetics of the non-prostanoids on the NANC system of the colon remain unexplained, and must be taken into account when characterizing neuronal IP-receptors. British Journal of Pharmacology (2000) 129, 782,790; doi:10.1038/sj.bjp.0703090 [source]