Shell Structure (shell + structure)

Distribution by Scientific Domains
Distribution within Polymers and Materials Science

Selected Abstracts

A Facile Synthesis and Characterization of Monodisperse Spherical Pigment Particles with a Core/Shell Structure,

C. Lin
Abstract In this paper, a facile sol,gel process for producing monodisperse, spherical, and nonaggregated pigment particles with a core/shell structure is reported. Spherical silica particles (245 and 385,nm in diameter) and Cr2O3, ,-Fe2O3, ZnCo2O4, CuFeCrO4, MgFe2O4, and CoAl2O4 pigments are selected as cores and shells, respectively. The obtained core/shell-structured pigment samples, denoted as SiO2@Cr2O3 (green), SiO2@,-Fe2O3 (red), SiO2@MgFe2O4 (brown), SiO2@ZnCo2O4 (dark green), SiO2@CoAl2O4 (blue), and SiO2@CuFeCrO4 (black), are well characterized by using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and UV-vis diffuse reflection, as well as by investigating the magnetic properties. The results of XRD and high-resolution TEM (HRTEM) demonstrate that the pigment shells crystallize well on the surface of SiO2 particles. The thickness of the pigment shell can be tuned by the number of coatings, to some extent. These pigment particles can be well dispersed in some solvents (such as glycol) to form relatively more stable suspensions than the commercial products. Apart from the color characteristics, some of pigments like SiO2@Cr2O3, SiO2@MgFe2O4, and SiO2@CuFeCrO4 also show magnetic properties with coercivities of 1098,Oe (5,K), 648,Oe (5,K), and 91,Oe (298,K), respectively. [source]

Self-Aligned Nanolenses with Multilayered Ge/SiO2 Core/Shell Structures on Si,(001),

H.-C. Chen
Selective etching of multilayered Ge-quantum-dot/Si-spacer has been used to fabricate stacked Ge@SiO2 nanolenses with the ability to filter and focus 1.5,,m light. These lenses have potential for use as Si-compatible photodetector materials for telecommunications. The left figure is a schematic sketch of the nanolenses and the right figure is a transmission electron microscopy image of the lenses. [source]


Abstract:, Palaeozoic and Mesozoic cephalopod conchs occasionally reveal dark organic coatings at the aperture. A number of these coatings, including still unrecorded examples, are described, figured and interpreted herein. On the basis of elemental analysis, actualistic comparison and a comparison with Triassic bivalves, some of these coatings are shown to consist of apatite and primarily probably of conchiolin (and also probably melanin). In several Mesozoic ammonoid genera such as Paranannites, Psiloceras, Lytoceras, Phylloceras, Harpoceras and Chondroceras, some of these coatings (recorded herein for most of these taxa for the first time) are interpreted as a structure similar to the black band, which was previously known only from Recent Allonautilus and Nautilus. In contrast to these nautilid genera, however, the organic material of some Mesozoic ammonoids was not deposited on the inside of the shell but externally, albeit positioned at the terminal aperture as in Recent nautilids. Some ammonoids of Carboniferous and Triassic age show several such bands at more or less regular angular distances on the ultimate whorls and at the aperture, e.g. Nomismoceras, Gatherites, Owenites, Paranannites, Juvenites and Melagathiceratidae gen. et sp. nov. Triassic material from Oman shows that the black coating was probably secreted from the inside, because the position of this organic deposit changes from interior to exterior in an anterior direction (i.e. adaperturally). This structure has previously been referred to as a ,false colour pattern' and is here interpreted as having been formed at an interim aperture or megastria (,alter Mundrand'). All structures discussed in the paper are considered to have been secreted by a single organ and to have been initiated by some form of stress or adverse conditions. Thus, certain environmental parameters and growth anomalies appear to have influenced their formation. [source]

Silica Supported Submicron SiO2@Y2SiO5:Eu3+ and SiO2@Y2SiO5:Ce3+/Tb3+ Spherical Particles with a Core,Shell Structure: Sol,Gel Synthesis and Characterization

Cuikun Lin
Abstract X1 -Y2SiO5:Eu3+ and X1 -Y2SiO5:Ce3+ and/or Tb3+ phosphor layers have been coated on nonaggregated, monodisperse, submicron spherical SiO2 particles by a sol,gel process, followed by surface reaction at high temperature (1000 °C), to give core/shell structured SiO2@Y2SiO5:Eu3+ and SiO2@Y2SiO5:Ce3+/Tb3+ particles. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), TEM, photoluminescence (PL), low voltage cathodoluminescence (CL), and time-resolved PL spectra and lifetimes are used to characterize these materials. The XRD results indicate that X1 -Y2SiO5 layers have been successfully coated on the surface of SiO2 particles, as further verified by the FESEM and TEM images. The PL and CL studies suggest that SiO2@Y2SiO5:Eu3+, SiO2@Y2SiO5:Tb3+ (or Ce3+/Tb3+), and SiO2@Y2SiO5:Ce3+ core/shell particles exhibit red (Eu3+, 613 nm: 5D0,7F2), green (Tb3+, 542 nm: 5D4,7F5), or blue (Ce3+, 450 nm: 5d-4f) luminescence, respectively. PL excitation, emission, and time-resolved spectra demonstrate that there is an energy transfer from Ce3+ to Tb3+ in the SiO2@Y2SiO5:Ce3+,Tb3+ core/shell particles. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2006) [source]

ChemInform Abstract: [NaSn12O8Se6]3- , A Chalcogenostannate Anion with Shell Structure.

CHEMINFORM, Issue 34 2002
Harald Krautscheid
Abstract ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a "Full Text" option. The original article is trackable via the "References" option. [source]

Entwurf und überschlägige Berechnung von kreiszylindrischen Schalentragwerken

Herbert Hotzler Dr.-Ing.
Nach einer Definition der Schalen und Faltwerke wird das Tragverhalten kreiszylindrischer Schalentragwerke erläutert. Für eine formtreue Verformung, bei der sich der Querschnitt eines Schalentragwerkes bei lotrechter Belastung nur lotrecht durchbiegt und sich die Normalspannungen ,x über die Querschnittshöhe fast linear wie bei einem Träger verteilen, werden Entwurfshinweise gegeben und einfache Formeln zur Berechnung der Spannungen entwickelt. Hiermit lassen sich PC-Berechnungen nach der FE-Methode einschätzen und überprüfen. Auf die Sonderfälle Temperatur, halbseitige Belastung und Einzellasten wird eingegangen und das Beulen ausführlich erläutert. Die Näherungsberechnung wird an einem Beispiel gezeigt und mit den Ergebnissen einer genauen Berechnung verglichen. Design and Approximate Calculation of Circular Cylindrical Shell Structures At first a definition of shells and folded plates is given. Then the supporting behaviour of circular cylindrical shell-structures is demonstrated. Design advices and simple formulas are given for a so-called unchangeable deformation of the cross-section on which the cross-section deforms only vertically due to vertically loadings and on which the normal stresses ,x are nearly linearely distributed over the high of the cross-section. PC-calculations with FE-methods can be estimated and tested by the given simple formulas. Special cases like temperature, half-side loadings and pointloadings are discussed. The buckling is explained in details. An example of an approximate calculation is demonstrated and the results are compared with an exact calculation. [source]

Shell structure, ontogeny and affinities of the Lower Cambrian bivalved problematic fossil Mickwitzia muralensis Walcott, 1913

LETHAIA, Issue 4 2004
Exceptionally preserved carbonate- and shale-hosted Mickwitzia muralensis from the Lower Cambrian Mural Formation, southern Canadian Rocky Mountains, complement one another to yield an unusually complete account of its ontogeny, ecology and phylogenetic relationships. The shell of M. muralensis is composed of dense phosphatic layers interspersed with porous organic-rich layers. At the insertion of shell-penetrating tubes, shell layers deflect inwards to produce inwardly pointing cones. The tubes are interpreted as having hosted setae that were secreted by outer-epithelial follicles. Follicular setae also occurred at the mantle margin, where they were oriented within the plane of the shell as in modern brachiopods. During ontogeny, the initial setae oriented in the plane of the shell occurred before the first shell-penetrative setae. In the juvenile and early-mature stages of shell secretion, a posterior opening was present between both valves and was used for the protrusion of an attachment structure. In the late-mature shell, this opening became fixed in the ventral valve. Based on the posterior margin and the shell microstructure, a close relationship between Mickwitzia and the paterinids is proposed with differences interpreted as heterochronic. The shell-penetrative setal apparatus of M. muralensis is distinct from that previously described of Micrina, though both types are conceivably homologous to adult and juvenile setae of modern brachiopods. [source]

A Nanoreactor Framework of a Au@SiO2 Yolk/Shell Structure for Catalytic Reduction of p -Nitrophenol,

Joongoo Lee
A nanoreactor system comprising gold cores and silica hollow shells with empty inner space demonstrated. The Au@SiO2 yolk/shell nanoreactor is synthesized by selective etching of the gold cores in Au@SiO2 core/shell particles (see figure). This nanoreactor framework catalyzes the reduction of p -nitrophenol, exhibiting interesting size-dependent reaction property. [source]

ZnO Hierarchical Micro/Nanoarchitectures: Solvothermal Synthesis and Structurally Enhanced Photocatalytic Performance,

Fang Lu
Abstract A novel ZnO hierarchical micro/nanoarchitecture is fabricated by a facile solvothermal approach in an aqueous solution of ethylenediamine (EDA). This complex architecture is of a core/shell structure, composed of dense nanosheet-built networks that stand on a hexagonal-pyramid-like microcrystal (core part). The ZnO hexagonal micropyramid has external surfaces that consist of a basal plane (000) and lateral planes {011}. The nanosheets are a uniform thickness of about 10,nm and have a single-crystal structure with sheet-planar surfaces as {20} planes. These nanosheets interlace and overlap each other with an angle of 60° or 120°, and assemble into a discernible net- or grid-like morphology (about 100,nm in grid-size) on the micropyramid, which shows a high specific surface area (185.6,m2,g,1). Such a ZnO micro/nanoarchitecture is new in the family of ZnO nanostructures. Its formation depends on the concentration of the EDA solution as well as on the type of zinc source. A two-step sequential growth model is proposed based on observations from a time-dependent morphology evolution process. Importantly, such structured ZnO has shown a strong structure-induced enhancement of photocatalytic performance and has exhibited a much better photocatalytic property and durability for the photodegradation of methyl orange than that of other nanostructured ZnO, such as the powders of nanoparticles, nanosheets, and nanoneedles. This is mainly attributed to its higher surface-to-volume ratio and stability against aggregation. This work not only gives insight into understanding the hierarchical growth behaviour of complex ZnO micro/nanoarchitectures in a solution-phase synthetic system, but also provides an efficient route to enhance the photocatalytic performance of ZnO, which could also be extended to other catalysts, such as the inherently excellent TiO2, if they are of the same hierarchical micro/nanoarchitecture with an open and porous nanostructured surface layer. [source]

A Facile Synthesis and Characterization of Monodisperse Spherical Pigment Particles with a Core/Shell Structure,

C. Lin
Abstract In this paper, a facile sol,gel process for producing monodisperse, spherical, and nonaggregated pigment particles with a core/shell structure is reported. Spherical silica particles (245 and 385,nm in diameter) and Cr2O3, ,-Fe2O3, ZnCo2O4, CuFeCrO4, MgFe2O4, and CoAl2O4 pigments are selected as cores and shells, respectively. The obtained core/shell-structured pigment samples, denoted as SiO2@Cr2O3 (green), SiO2@,-Fe2O3 (red), SiO2@MgFe2O4 (brown), SiO2@ZnCo2O4 (dark green), SiO2@CoAl2O4 (blue), and SiO2@CuFeCrO4 (black), are well characterized by using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and UV-vis diffuse reflection, as well as by investigating the magnetic properties. The results of XRD and high-resolution TEM (HRTEM) demonstrate that the pigment shells crystallize well on the surface of SiO2 particles. The thickness of the pigment shell can be tuned by the number of coatings, to some extent. These pigment particles can be well dispersed in some solvents (such as glycol) to form relatively more stable suspensions than the commercial products. Apart from the color characteristics, some of pigments like SiO2@Cr2O3, SiO2@MgFe2O4, and SiO2@CuFeCrO4 also show magnetic properties with coercivities of 1098,Oe (5,K), 648,Oe (5,K), and 91,Oe (298,K), respectively. [source]

The Synthesis and Assembly of Polymeric Microparticles Using Microfluidics

Dhananjay Dendukuri
Abstract The controlled synthesis of micrometer-sized polymeric particles bearing features such as nonspherical shapes and spatially segregated chemical properties is becoming increasingly important. Such particles can enable fundamental studies on self-assembly and suspension rheology, as well as be used in applications ranging from medical diagnostics to photonic devices. Microfluidics has recently emerged as a very promising route to the synthesis of such polymeric particles, providing fine control over particle shape, size, chemical anisotropy, porosity, and core/shell structure. This progress report summarizes microfluidic approaches to particle synthesis using both droplet- and flow-lithography-based methods, as well as particle assembly in microfluidic devices. The particles formed are classified according to their morphology, chemical anisotropy, and internal structure, and relevant examples are provided to illustrate each of these approaches. Emerging applications of the complex particles formed using these techniques and the outlook for such processes are discussed. [source]

Self-Assembled Nanoscale Ring Arrays from a Polystyrene- b -polyferrocenylsilane- b -poly(2-vinylpyridine)Triblock Terpolymer Thin Film

Vivian P. Chuang
Hollow ring arrays with an outer and inner diameter of 33 and 11,nm, respectively, are formed from a thin film of poly-(styrene- b -ferrocenylethylmethylsilane- b -2-vinyl pyridine) (PS- b -PFS- b -P2VP) triblock terpolymer with a core/shell cylindrical morphology. The PS minority block forms a core surrounded by a PFS shell in a P2VP matrix; the core/shell structure is oriented perpendicularly to the film surface. The PS core and P2VP matrix blocks are partly removed using oxygen reactive ion etching, leaving ring patterns made from oxidized PFS. [source]

Stability and optimum polymerized condition of polysiloxane,polyacrylate core/shell polymer

Chengyue Ge
Abstract The stable emulsion of core/shell latex with little coagulum (no more than 0.5% in quality relative to total monomers) has been prepared at low temperature with potassium-persulfate (KPS), sodium formaldehyde sulfoxylate (SFS), and 2,2,-azobis(2-(2-imidazolin-2-yl)propane)dihydrochloride (VA-044) as composite initiators by staged emulsion polymerization. Reactive surfactants were used to significantly improve the stability of emulsion. More interestingly, reverse core/shell structure was investigated when the organic silicon was added in the late period of polymerization. The effects of the emulsifier, initiators, dosage of organic silicon, and monomer's content on conversion and graft efficiency were studied in detail. Moreover, the stability of emulsion was investigated by the values of zeta potential (,) and coagulum. More importantly, the thermal performance and stability of PSI/PA composite latex was studied by the glass transition temperature (Tg). The results showed that there are appropriate values for all factors to obtain high conversion, graft efficiency, and excellent stability: The dosage of surfactant was about 0.44 g, the dosage of VA-044 was about 1000 mg kg,1, the dosage of organic silicon was about 15%, and the monomer's content was about 30%. In addition, the introduction of organic silicon improved the Tg. © 2010 Wiley Periodicals, Inc. Adv Polym Techn 29:161,172, 2010; View this article online at wileyonlinelibrary. DOI 10.1002/adv.20182 [source]

The effects of osmotic stress on the structure and function of the cell nucleus

John D. Finan
Abstract Osmotic stress is a potent regulator of the normal function of cells that are exposed to osmotically active environments under physiologic or pathologic conditions. The ability of cells to alter gene expression and metabolic activity in response to changes in the osmotic environment provides an additional regulatory mechanism for a diverse array of tissues and organs in the human body. In addition to the activation of various osmotically- or volume-activated ion channels, osmotic stress may also act on the genome via a direct biophysical pathway. Changes in extracellular osmolality alter cell volume, and therefore, the concentration of intracellular macromolecules. In turn, intracellular macromolecule concentration is a key physical parameter affecting the spatial organization and pressurization of the nucleus. Hyper-osmotic stress shrinks the nucleus and causes it to assume a convoluted shape, whereas hypo-osmotic stress swells the nucleus to a size that is limited by stretch of the nuclear lamina and induces a smooth, round shape of the nucleus. These behaviors are consistent with a model of the nucleus as a charged core/shell structure pressurized by uneven partition of macromolecules between the nucleoplasm and the cytoplasm. These osmotically-induced alterations in the internal structure and arrangement of chromatin, as well as potential changes in the nuclear membrane and pores are hypothesized to influence gene transcription and/or nucleocytoplasmic transport. A further understanding of the biophysical and biochemical mechanisms involved in these processes would have important ramifications for a range of fields including differentiation, migration, mechanotransduction, DNA repair, and tumorigenesis. J. Cell. Biochem. 109: 460,467, 2010. © 2009 Wiley-Liss, Inc. [source]

Transforming powder mechanical properties by core/shell structure: Compressible sand

Limin Shi
Abstract Some active pharmaceutical ingredients possess poor mechanical properties and are not suitable for tableting. Using fine sand (silicon dioxide), we show that a core/shell structure, where a core particle (sand) is coated with a thin layer of polyvinylpyrrolidone (PVP), can profoundly improve powder compaction properties. Sand coated with 5% PVP could be compressed into intact tablets. Under a given compaction pressure, tablet tensile strength increases dramatically with the amount of coating. This is in sharp contrast to poor compaction properties of physical mixtures, where intact tablets cannot be made when PVP content is 20% or less. The profoundly improved tabletability of core/shell particles is attributed to the formation of a continuous three-dimensional bonding network in the tablet. © 2010 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 99:4458,4462, 2010 [source]

PO2 Dependence of the Diffuse-Phase Transition in Base Metal Capacitor Dielectrics

Daniel E. McCauley
The diffuse-phase transition in BaTiO3 -based dielectrics for capacitor applications has been studied with respect to its dependence on oxygen partial pressure during sintering. Understanding the mobility of this transition is critical in developing next generation dielectrics for ultra thin (,1 ,m) applications while maintaining the appropriate temperature stability and insulation resistance. Historically, a heterogeneous core/shell microstructure was developed to maintain temperature stability. However, in fired grains of ,250 nm (required for layers ,1 ,m) a well-defined core/shell structure is very difficult to establish. The results from this study demonstrate that careful control of the diffuse-phase transition addresses some of these problems. [source]

Transmission electron microscopy and theoretical analysis of AuCu nanoparticles: Atomic distribution and dynamic behavior

J.A. Ascencio
Abstract Though the application of bimetallic nanoparticles is becoming increasingly important, the local atomistic structure of such alloyed particles, which is critical for tailoring their properties, is not yet very clearly understood. In this work, we present detailed study on the atomistic structure of Au,Cu nanoparticles so as to determine their most stable configurations and the conditions for obtaining clusters of different structural variants. The dynamic behavior of these nanoparticles upon local heating is investigated. AuCu nanoparticles are characterized by high resolution transmission electron microscopy (HRTEM) and energy filtering elemental composition mapping (EFECM), which allowed us to study the internal structure and the elemental distribution in the particles. Quantum mechanical approaches and classic molecular dynamics methods are applied to model the structure and to determine the lowest energy configurations, the corresponding electronic structures, and understand structural transition of clusters upon heating, supported by experimental evidences. Our theoretical results demonstrate only the core/shell bimetallic structure have negative heat of formation, both for decahedra and octahedral, and energetically favoring core/shell structure is with Au covering the core of Cu, whose reverse core/shell structure is not stable and may transform back at a certain temperature. Experimental evidences corroborate these structures and their structural changes upon heating, demonstrating the possibility to manipulate the structure of such bimetallic nanoparticles using extra stimulating energy, which is in accordance with the calculated coherence energy proportions between the different configurations. Microsc. Res. Tech., 2006. © 2006 Wiley-Liss, Inc. [source]

Biocompatible, Luminescent Silver@Phenol Formaldehyde Resin Core/Shell Nanospheres: Large-Scale Synthesis and Application for In Vivo Bioimaging,

Shi-Rui Guo
Abstract Biocompatible and green luminescent monodisperse silver/phenol formaldehyde resin core/shell spheres with controllable sizes, in the range of 180 to 1000 nm, and interesting architectures (centric, eccentric, and coenocytic core/shell spheres) have been synthesized by a facile one-step hydrothermal approach. These spheres can be used as bioimaging labels for human lung cancer H1299 cells. The results demonstrate that the nanoparticles can be internalized into cells and exhibit no cytotoxic effects, showing that such novel biocompatible core/shell structures can potentially be used as in vivo bioimaging labels. This facile one-pot polymerization and encapsulation technique may provide a useful tool to synthesize other core/shell particles that have potential application in biotechnology. [source]

Poly(,-caprolactone)-Functionalized Carbon Nanotubes and Their Biodegradation Properties,

H.-L. Zeng
Abstract Biodegradable poly(,-caprolactone) (PCL) has been covalently grafted onto the surfaces of multiwalled carbon nanotubes (MWNTs) by the "grafting from" approach based on in-situ ring-opening polymerization of ,-caprolactone. The grafted PCL content can be controlled easily by adjusting the feed ratio of monomer to MWNT-supported macroinitiators (MWNT-OH). The resulting products have been characterized with Fourier-transform IR (FTIR), NMR, and Raman spectroscopies, transmission electron microscopy (TEM), and scanning electron microscopy (SEM). After PCL was coated onto MWNT surfaces, core/shell structures with nanotubes as the "hard" core and the hairy polymer layer as the "soft" shell are formed, especially for MWNTs coated with a high density of polymer chains. Such a polymer shell promises good solubility/dispersibility of the MWNT,PCL nanohybrids in low-boiling-point organic solvents such as chloroform and tetrahydrofuran. Biodegradation experiments have shown that the PCL grafted onto MWNTs can be completely enzymatically degraded within 4,days in a phosphate buffer solution in the presence of pseudomonas (PS) lipase, and the carbon nanotubes retain their tubelike morphologies, as observed by SEM and TEM. The results present possible applications for these biocompatible PCL-functionalized CNTs in bionanomaterials, biomedicine, and artificial bones. [source]

Zum Tragverhalten flacher Schalentragwerke unter Kriechbeanspruchung

Jörg Bockhold Dr.-Ing.
Die wirklichkeitsnahe Vorhersage des Tragverhaltens von Schalentragwerken aus Stahlbeton stellt nach wie vor einen hohen Anspruch an den planenden Ingenieur. In diesem Beitrag werden beispielhaft anhand einer flachen zylindrischen Dachschale die unterschiedlichen Einflüsse auf die Langzeittragfähigkeit beulgefährdeter Strukturen vorgestellt und auf die besondere Bedeutung des Betonkriechens im Hinblick auf ein Dauerstandversagen des Tragwerkes hingewiesen. On the bearing Behaviour of shallow shell Structures under creep Loading The close-to-reality prediction of the bearing behaviour of RC shell structures is still a challenging task for civil engineers. In this contribution, different influence parameters on the long-term performance of buckling-sensitive structures are presented exemplarily in the context of concrete creep by means of a cylindrical shell roof with regard to structural failure due to sustained loads. [source]

Hollow Mesoporous Zirconia Nanocapsules for Drug Delivery

Shaoheng Tang
Abstract Hollow mesoporous zirconia nanocapsules (hm -ZrO2) with a hollow core/porous shell structure are demonstrated as effective vehicles for anti-cancer drug delivery. While the highly porous feature of the shell allows the drug, doxorubicin(DOX), to easily pass through between the inner void space and surrounding environment of the particles, the void space in the core endows the nanocapsules with high drug loading capacity. The larger the inner hollow diameter, the higher their DOX loading capacity. A loading of 102% related to the weight of hm -ZrO2 is achieved by the nanocapsules with an inner diameter of 385,nm. Due to their pH-dependent charge nature, hm -ZrO2 loaded DOX exhibit pH-dependent drug releasing kinetics. A lower pH offers a faster DOX release rate from hm -ZrO2. Such a property makes the loaded DOX easily release from the nanocapsules when up-taken by living cells. Although the flow cytometry reveals more uptake of hm -ZrO2 particles by normal cells, hm -ZrO2 loaded DOX release more drugs in cancer cells than in normal cells, leading to more cytotoxicity toward tumor cells and less cytotoxicity to healthy cells than free DOX. [source]

High Performance Carbon-Supported Core@Shell PdSn@Pt Electrocatalysts for Oxygen Reduction Reaction

FUEL CELLS, Issue 4 2010
W. Zhang
Abstract In this report, a low-cost and high performance PdSn@Pt/C catalyst with core,shell structure is prepared by two-stage route. X-ray diffraction (XRD) and transmission electron microscopy (TEM) examinations show that the composite catalyst particles distribution is quite homogeneous and has a high surface area and the PdSn@Pt/C catalyst has an average diameter of ca. 5.6,nm. The oxygen reduction reaction (ORR) activity of PdSn@Pt/C was higher than commercial Pt/C catalyst. Catalytic activity is studied by cyclic voltammetry. High electrocatalytic activities could be attributed to the synergistic effect between Pt and PdSn. [source]

ZnO Nanostructures for Dye-Sensitized Solar Cells

Qifeng Zhang
Abstract This Review focuses on recent developments in the use of ZnO nanostructures for dye-sensitized solar cell (DSC) applications. It is shown that carefully designed and fabricated nanostructured ZnO films are advantageous for use as a DSC photoelectrode as they offer larger surface areas than bulk film material, direct electron pathways, or effective light-scattering centers, and, when combined with TiO2, produce a core,shell structure that reduces the combination rate. The limitations of ZnO-based DSCs are also discussed and several possible methods are proposed so as to expand the knowledge of ZnO to TiO2, motivating further improvement in the power-conversion efficiency of DSCs. [source]

Restricted and unrestricted Hartree,Fock approaches applied to spherical quantum dots in a magnetic field

C. F. Destefani
Abstract The Roothaan and Pople,Nesbet approaches for real atoms are adapted to quantum dots in the presence of a magnetic field. Single-particle Gaussian basis sets are constructed, for each dot radius, under the condition of maximum overlap with the exact functions. The chemical potential, charging energy, and total spin expected values are calculated, and we have verified the validity of the quantum dot energy shell structure as well as Hund's rule for electronic occupation at zero magnetic field. At finite field, we have observed the violation of Hund's rule and studied the influence of magnetic field on the closed and open energy shell configurations. We have also compared the present results with those obtained within the LS-coupling scheme for low electronic occupation numbers. We focus only on ground-state properties and consider quantum dots populated up to 40 electrons, constructed by GaAs or InSb nanocrystals. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2006 [source]

Supershells in deformed harmonic oscillators and atomic clusters

Dennis Bonatsos
Abstract From the mathematical point of view, the appearance of supershells is a general feature of potentials having relatively sharp edges. In physics, supershells have been observed in systems of metal clusters, which are also known to exhibit an underlying shell structure with magic numbers intermediate between the magic numbers of the 3-D isotropic harmonic oscillator and those of the 3-D square well. In the present study, Nilsson's modified harmonic oscillator (without any spin,orbit interaction), as well as the 3-D q -deformed harmonic oscillator with uq(3) , soq(3) symmetry, are considered. The former model has been used for an early schematic description of shell structure in metal clusters, while the latter has been found to successfully reproduce the magic numbers of metal clusters up to 1500 atoms, the expected limit of validity for theories based on the filling of electronic shells. The systematics of the appearance of supershells in the two models will be considered, putting emphasis on the differences between the spectra of the two oscillators. While the validity of Nilsson's modified harmonic oscillator framework is limited to relatively low particle numbers, the 3-D q -deformed harmonic oscillator gives reliable descriptions of the first supershell in metal clusters, which lies within its region of validity. © 2002 Wiley Periodicals, Inc. Int J Quantum Chem, 2002 [source]

Study of ferrite ferrofluids by small-angle scattering of polarized neutrons

Massimo Bonini
Nanoparticles consisting of a magnetic core (Fe3O4, CoFe2O4 and CuFe2O4) and a hydrophobic shell were prepared by chemical co-precipitation of the inorganic cores and by subsequently modifying the surface with dodecanoic acid. The nanoparticles were then dispersed in cyclohexane to form stable ferrofluids. These dispersions were investigated by small-angle scattering of polarized neutrons and the data were interpreted according to a `pearl-necklace' model, opportunely modified to account for the core,shell structure of the particles. Results of the fitting show that the particles consist of a magnetic core with a mean radius of 40,50,Å and an organic shell with a thickness of 7,8,Å. These nanoparticles assemble in fractal aggregates when a magnetic field is applied. [source]

Synthesis and characterization of PNIPAM/PS core/shell particles

Li Zhang
Abstract Crosslinked, monodisperse PNIPAM particles were synthesized by precipitation polymerization. The particle size was measured by dynamic light scattering (DLS), capillary hydrodynamic fractionation (CHDF), and transmission electron microscopy (TEM). Two different polymerization methods were used to prepare PNIPAM/PS core/shell particles, both above and below the volume phase transition temperature (VPPT) using either a semibatch or seeded semibatch polymerization process. In both processes, uniform "raspberry" structures were obtained in which polystyrene formed small domains on the surface of the PNIPAM particles. The resulting core and shell structure was confirmed by temperature-dependent particle size and density gradient experiments. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 [source]

Morphology, mechanical properties, and thermal stability of poly(L -lactic acid)/poly(butylene succinate- co -adipate)/silicon dioxide composites

Ruyin Wang
Abstract Poly(butylene succinate- co -adipate) (PBSA) and two types of SiO2 (hydrophilic or hydrophobic) were used to modify poly(L -lactic acid) (PLLA). The mechanical properties, rheological and thermal behavior, phase morphology, and thermal stability of PLLA/PBSA/SiO2 composites were investigated. The impact strength, flexural strength, and modulus of PLLA/PBSA blends increased after the addition of hydrophobic SiO2 without decreasing the elongation at break, and the elongation at break monotonically decreased with increasing hydrophilic SiO2 content. The melt elasticity and viscosity of the PLLA/PBSA blend increased with the addition of SiO2. The hydrophilic SiO2 was encapsulated by the dispersed PBSA phase in the composites, which led to the formation of a core,shell structure, whereas the hydrophobic SiO2 was more uniformly dispersed and mainly located in the PLLA matrix, which was desirable for the optimum reinforcement of the PLLA/PBSA blend. The thermogravimetric analysis results show that the addition of the two types of SiO2 increased the initial decomposition temperature and activation energy and consequently retarded the thermal degradation of PLLA/PBSA. The retardation of degradation was prominent with the addition of hydrophobic SiO2. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 [source]

Dynamic mechanical properties and morphology of high-density polyethylene/CaCO3 blends with and without an impact modifier

Yu-Lin Yang
Abstract Dynamic mechanical analysis and differential scanning calorimetry were used to investigate the relaxations and crystallization of high-density polyethylene (HDPE) reinforced with calcium carbonate (CaCO3) particles and an elastomer. Five series of blends were designed and manufactured, including one series of binary blends composed of HDPE and amino acid treated CaCO3 and four series of ternary blends composed of HDPE, treated or untreated CaCO3, and a polyolefin elastomer [poly(ethylene- co -octene) (POE)] grafted with maleic anhydride. The analysis of the tan , diagrams indicated that the ternary blends exhibited phase separation. The modulus increased significantly with the CaCO3 content, and the glass-transition temperature of POE was the leading parameter that controlled the mechanical properties of the ternary blends. The dynamic mechanical properties and crystallization of the blends were controlled by the synergistic effect of CaCO3 and maleic anhydride grafted POE, which was favored by the core,shell structure of the inclusions. The treatment of the CaCO3 filler had little influence on the mechanical properties and morphology. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3907,3914, 2007 [source]

Core,shell structure and segregation effects in composite droplet polymer blends

AICHE JOURNAL, Issue 4 2003
Joël Reignier
Core,shell morphology formation within the dispersed phase was studied for composite droplet polymer-blend systems comprising a high-density polyethylene matrix, polystyrene shell and different molecular weights of poly(methyl methacrylate) core material. The blends were prepared in the melt using an internal mixer, and the morphology was analyzed by electron microscopy. Changing the viscoelastic properties of the core in the dispersed phase dramatically affects PS-PMMA segregation within the dispersed composite droplet itself. A high-molecular-weight-PMMA core contains a large quantity of occluded PS inclusions, while the low-molecular-weight PMMA results in a perfectly segregated PS shell and PMMA core. These phenomena were attributed to the viscosity of the PMMA. Using the latter system, a direct microscopic study of the shell formation process demonstrates unambiguously that under conditions of perfect segregation, the onset of complete shell formation corresponds to a shell thickness that is close to two times the radius of gyration of polystyrene. Thus, the thinnest possible shell in such a system possesses a molecular-scale thickness. The system with the high-molecular-weight-PMMA core demonstrates an onset of complete shell formation that is displaced to higher concentrations due to the poor segregation effect. By counterbalancing the effects of viscosity ratio and interfacial effects on the composite droplet size, it is possible to generate perfectly segregated core,shell dispersed-phase morphologies of almost identical size with a controlled shell thickness ranging from 40 to 300 nm. [source]