Separate Genes (separate + gene)

Distribution by Scientific Domains


Selected Abstracts


The 1.25,Ĺ resolution structure of phosphoribosyl-ATP pyrophosphohydrolase from Mycobacterium tuberculosis

ACTA CRYSTALLOGRAPHICA SECTION D, Issue 6 2008
Farah Javid-Majd
Phosphoribosyl-ATP pyrophosphohydrolase is the second enzyme in the histidine-biosynthetic pathway, irreversibly hydrolyzing phosphoribosyl-ATP to phosphoribosyl-AMP and pyrophosphate. It is encoded by the hisE gene, which is present as a separate gene in many bacteria and archaea but is fused to hisI in other bacteria, fungi and plants. Because of its essentiality for growth in vitro, HisE is a potential drug target for tuberculosis. The crystal structures of two native (uncomplexed) forms of HisE from Mycobacterium tuberculosis have been determined to resolutions of 1.25 and 1.79,Ĺ. The structure of the apoenzyme reveals that the protein is composed of five ,-helices with connecting loops and is a member of the ,-helical nucleoside-triphosphate pyrophosphatase superfamily. The biological unit of the protein is a homodimer, with an active site on each subunit composed of residues exclusively from that subunit. A comparison with the Campylobacter jejuni dUTPase active site allowed the identification of putative metal- and substrate-binding sites in HisE, including four conserved glutamate and glutamine residues in the sequence that are consistent with a motif for pyrophosphohydrolase activity. However, significant differences between family members are observed in the loop region between ,-helices H1 and H3. The crystal structure of M. tuberculosis HisE provides insights into possible mechanisms of substrate binding and the diversity of the nucleoside-triphosphate pyrophosphatase superfamily. [source]


Parathyroid hormone-related protein and its receptors: nuclear functions and roles in the renal and cardiovascular systems, the placental trophoblasts and the pancreatic islets

BRITISH JOURNAL OF PHARMACOLOGY, Issue 6 2001
Thomas L Clemens
The cloning of the so-called ,parathyroid hormone-related protein' (PTHrP) in 1987 was the result of a long quest for the factor which, by mimicking the actions of PTH in bone and kidney, is responsible for the hypercalcemic paraneoplastic syndrome, humoral calcemia of malignancy. PTHrP is distinct from PTH in a number of ways. First, PTHrP is the product of a separate gene. Second, with the exception of a short N-terminal region, the structure of PTHrP is not closely related to that of PTH. Third, in contrast to PTH, PTHrP is a paracrine factor expressed throughout the body. Finally, most of the functions of PTHrP have nothing in common with those of PTH. PTHrP is a poly-hormone which comprises a family of distinct peptide hormones arising from post-translational endoproteolytic cleavage of the initial PTHrP translation products. Mature N-terminal, mid-region and C-terminal secretory forms of PTHrP are thus generated, each of them having their own physiologic functions and probably their own receptors. The type 1 PTHrP receptor, binding both PTH(1-34) and PTHrP(1-36), is the only cloned receptor so far. PTHrP is a PTH-like calciotropic hormone, a myorelaxant, a growth factor and a developmental regulatory molecule. The present review reports recent aspects of PTHrP pharmacology and physiology, including: (a) the identification of new peptides and receptors of the PTH/PTHrP system; (b) the recently discovered nuclear functions of PTHrP and the role of PTHrP as an intracrine regulator of cell growth and cell death; (c) the physiological and developmental actions of PTHrP in the cardiovascular and the renal glomerulo-vascular systems; (d) the role of PTHrP as a regulator of pancreatic beta cell growth and functions, and, (e) the interactions of PTHrP and calcium-sensing receptors for the control of the growth of placental trophoblasts. These new advances have contributed to a better understanding of the pathophysiological role of PTHrP, and will help to identify its therapeutic potential in a number of diseases. British Journal of Pharmacology (2001) 134, 1113,1136; doi:10.1038/sj.bjp.0704378 [source]


The actin gene family: Function follows isoform,

CYTOSKELETON, Issue 10 2010
Benjamin J. Perrin
Although actin is often thought of as a single protein, in mammals it actually consists of six different isoforms encoded by separate genes. Each isoform is remarkably similar to every other isoform, with only slight variations in amino acid sequence. Nevertheless, recent work indicates that actin isoforms carry out unique cellular functions. Here, we review evidence drawn from localization studies, mouse models, and biochemical characterization to suggest a model for how in vivo mixing of actin isoforms may influence cytoskeletal function in cells. © 2010 Wiley-Liss, Inc. [source]


Genetic characterization of complex inter-recombinant HIV-1 strains circulating in Spain and reliability of distinct rapid subtyping tools,

JOURNAL OF MEDICAL VIROLOGY, Issue 3 2008
Africa Holguín
Abstract Genetic recombination and high rate of mutation increase HIV-1 diversity, allowing viruses to escape more easily from the host immune response or antiretroviral drugs. The recombinant nature of full-length HIV-1 genomic sequences derived from viruses infecting five epidemiologically unlinked individuals carrying HIV-1 non-B variants was investigated. Overlapping PCR amplifications followed by direct sequencing of viral products derived from plasma and phylogenetic analyses were carried out. Four viral sequences clustered with CRF06_cpx and one with CRF02_AG. However, subtyping of separate genes within the same genome revealed that four were recombinant forms involving different subtypes and/or CRFs with distinct breakpoints. Two specimens included CRF02_AG and CRF06_cpx sequences with several fragments from other HIV-1 clades along their genomes. Three rapid subtyping tools (Stanford, NCBI, and REGA) showed discrepant results when interpreting these viral sequences. This is the first description of CRF02_AG/CRF06_ cpx recombinants in Spain. The results highlight the tremendous heterogeneity of HIV-1 recombinant strains currently in circulation. J. Med. Virol. 80:383,391, 2008. © 2008 Wiley-Liss, Inc. [source]


Disruption of msl3 abolishes the synthesis of mycolipanoic and mycolipenic acids required for polyacyltrehalose synthesis in Mycobacterium tuberculosis H37Rv and causes cell aggregation

MOLECULAR MICROBIOLOGY, Issue 5 2002
Vinod S. Dubey
Summary Cell wall lipids of Mycobacterium tuberculosis containing multiple methylbranched fatty acids play critical roles in pathogenesis and thus offer targets for new antimycobacterial drugs. Mycocerosic acid synthase gene (mas) encodes the enzyme that produces one class of such acids. Seven mas -like genes (msls) were identified in the genome. One of them, msl3, originally annotated as two separate genes, pks 3 and pks 4, is now shown to constitute a single open reading frame, which encodes a 220.3 kDa protein. Msl3 was disrupted using a phage mediated delivery system and the gene replacement in the mutant was confirmed by polymerase chain reaction analysis of the flanking regions of the introduced disrupted gene and by Southern analysis. Biochemical analysis showed that the msl3 mutant does not produce mycolipanoic acids and mycolipenic (phthienoic) acids, the major constituents of polyacyl trehaloses and thus lacks this cell wall lipid, but synthesizes all of the other classes of lipids. The absence of the major acyl chains that anchor the surface-exposed acyltrehaloses causes a novel growth morphology; the cells stick to each other, most probably via the intercellular interaction between the exposed hydrophobic cell surfaces, manifesting a bead-like growth morphology without affecting the overall growth rate. [source]


Molecular Diversity Of Vascular Potassium Channel Isoforms

CLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, Issue 4 2002
Victoria P Korovkina
SUMMARY 1. One essential role for potassium channels in vascular smooth muscle is to buffer cell excitation and counteract vasoconstrictive influences. Several molecular mechanisms regulate potassium channel function. The interaction of these mechanisms may be one method for fine-tuning potassium channel activity in response to various physiological and pathological challenges. 2. The most prevalent K+ channels in vascular smooth muscle are large-conductance calcium- and voltage-sensitive channels (maxi-K channels) and voltage-gated channels (Kv channels). Both channel types are complex molecular structures consisting of a pore-forming , -subunit and an ancillary , -subunit. The maxi-K and Kv channel , -subunits assemble as tetramers and have S4 transmembrane domains that represent the putative voltage sensor. While most vascular smooth muscle cells identified to date contain both maxi-K and Kv channels, the expression of individual , -subunit isoforms and , -subunit association occurs in a tissue-specific manner, thereby providing functional specificity. 3. The maxi-K channel , -subunit derives its molecular diversity by alternative splicing of a single-gene transcript to yield multiple isoforms that differ in their sensitivity to intracellular Ca2+ and voltage, cell surface expression and post- translational modification. The ability of this channel to assemble as a homo- or heterotetramer allows for fine-tuning control to intracellular regulators. Another level of diversity for this channel is in its association with accessory , -subunits. Multiple , -subunits have been identified that can arise either from separate genes or alternative splicing of a , -subunit gene. The maxi-K channel , -subunits modulate the channel's Ca2+ and voltage sensitivity and kinetic and pharmacological properties. 4. The Kv channel , -subunit derives its diverse nature by the expression of several genes. Similar to the maxi-K channel, this channel has been shown to assemble as a homo- and heterotetramer, which can significantly change the Kv current phenotype in a given cell type. Association with a number of the ancillary , -subunits affects Kv channel function in several ways. Beta-subunits can induce inactivating properties and act as chaperones, thereby regulating channel cell-surface expression and current kinetics. [source]