psbA Gene (psba + gene)

Distribution by Scientific Domains


Selected Abstracts


Prevalence of highly host-specific cyanophages in the estuarine environment

ENVIRONMENTAL MICROBIOLOGY, Issue 2 2008
Kui Wang
Summary Cyanophages that infect coastal and oceanic Synechococcus have been studied extensively. However, no cyanophages infecting estuarine Synechococcus have been reported. In this study, seven cyanophages (three podoviruses, three siphoviruses and one myovirus) isolated from four estuarine Synechococcus strains were characterized in terms of their morphology, host range, growth and genetic features. All the podoviruses and siphoviruses were highly host specific. For the first time, the photosynthesis gene (psbA) was found in two podoviruses infecting estuarine Synechococcus. However, the psbA gene was not detected in the three siphoviruses. The psbA sequences from the two Synechococcus podoviruses clustered with some environmental psbA sequences, forming a unique cluster distantly related to previous known psbA clusters. Our results suggest that the psbA among Synechococcus podoviruses may evolve independently from the psbA of Synechococcus myoviruses. All three estuarine Synechococcus podoviruses contained the DNA polymerase (pol) gene, and clustered with other podoviruses that infect oceanic Synechococcus and Prochlorococcus, suggesting that the DNA pol is conserved among marine picocyanobacterial podoviruses. Prevalence of host-specific cyanophages in the estuary suggests that Synechococcus and their phages in the estuarine ecosystem may develop a host,phage relationship different from what have been found in the open ocean. [source]


A psbA mutation in Kochia scoparia (L) Schrad from railroad rights-of-way with resistance to diuron, tebuthiuron and metribuzin,

PEST MANAGEMENT SCIENCE (FORMERLY: PESTICIDE SCIENCE), Issue 11 2005
Lemma W Mengistu
Abstract Kochia [Kochia scoparia (L) Schrad] has become resistant to many herbicides used in cropland and railroad rights-of-way in North Dakota and Minnesota. Kochia scoparia plants that had survived annual treatments with diuron and tebuthiuron were sampled along railroad rights-of-way in North Dakota and Minnesota. The samples were screened in the greenhouse for resistance to diuron, tebuthiuron, metribuzin and bromoxynil from 0.5× to 32× the recommended use rates. A resistant K scoparia accession (MN-3R) was confirmed with resistance up to 16-fold higher than recommended use rates for tebuthiuron and diuron and up to 4-fold higher for metribuzin. However, the resistant K scoparia accession was susceptible to bromoxynil even at 50% of the recommended use rate. The herbicide binding region of the psbA gene fragment of eight resistant (R) and seven susceptible (S) K scoparia accessions was PCR-amplified and sequenced for detection of mutations. The psbA gene of four R K scoparia accessions was mutated at residue 219 with substitution of isoleucine for valine (GenBank accession number AY251265). The seven S K scoparia accession sequences were wild-type at this residue (GenBank accession number AY251266). The other four R accessions sequences showed a previously known triazine R mutation with substitution of glycine for serine at residue 264. All 15 K scoparia accessions were wild-type at all other psbA residues within the region analyzed. Resistance to diuron, tebuthiuron and metribuzin among the railroad rights-of-way K scoparia is probably due to the mutation at residue 219 of the psbA gene in some plants, but due to the previously reported Ser264Gly substitution in other plants. Target-site resistance associated with a change of valine to isoleucine at residue 219 of the psbA target-site in weeds has previously been reported for Poa annua L selected in diuron-treated grass seed fields, and for Amaranthus powelli S Wats selected in linuron-treated carrot fields. This is the first report of the mutation in herbicide-resistant K scoparia. Copyright © 2005 Society of Chemical Industry [source]


Potential photosynthesis gene recombination between Prochlorococcus and Synechococcus via viral intermediates

ENVIRONMENTAL MICROBIOLOGY, Issue 10 2005
Gil Zeidner
Summary Genes (psbA and psbD) encoding for photosynthetically important proteins were recently found in a number of cultured cyanophage genomes. This phenomenon may be a beneficial trait to the viruses or their photosynthetic cyanobacterial hosts, or may represent an untapped pool of genes involved in the formation of the photosynthetic apparatus that are prone to lateral gene transfer. Here we show analyses of psbA genes from uncultured environmental viruses and prophage populations. We observe a statistically significant separation between viral genes and their potential Synechococcus hosts' genes, and statistical analyses under models of codon evolution indicate that the psbA genes of viruses are evolving under levels of purifying selection that are virtually indistinguishable from their hosts. Furthermore, our data also indicate the possible exchange and reshuffling of psbA genes between Synechococcus and Prochlorococcus via phage intermediates. Overall, these observations raise the possibility that marine viruses serve as a potential genetic pool in shaping the evolution of cyanobacterial photosynthesis. [source]


Roles of CmpR, a LysR family transcriptional regulator, in acclimation of the cyanobacterium Synechococcus sp. strain PCC 7942 to low-CO2 and high-light conditions

MOLECULAR MICROBIOLOGY, Issue 3 2004
Yukari Takahashi
Summary The cmp operon of Synechococcus sp. strain PCC 7942, encoding a high-affinity bicarbonate transporter, is induced under low CO2 conditions by a LysR family protein CmpR. CmpR was found to be required also for induction of the operon by transfer of the cells from low-light to high-light conditions, indicating involvement of a common mechanism in the high-light- and low-CO2 -responsive regulation. Expression of the high-light inducible genes psbAII and psbAIII, on the other hand, was found to be induced also by low-CO2 conditions. A single promoter was responsible for the high-light and low-CO2 induction of each of psbAII and psbAIII, suggesting involvement of a common regulatory mechanism in the light and CO2 responses of the psbA genes. CmpR was, however, not required for the induction of psbAII and psbAIII, indicating the presence of multiple mechanisms for induction of genes under high-light and low-CO2 conditions. The CmpR-deficient mutant nevertheless showed lower levels of the psbAII and psbAIII transcripts than the wild-type strain under all the light and CO2 conditions examined. Gel shift assays showed that CmpR binds to the enhancer elements of psbAII and psbAIII, through specific interaction with a sequence signature conforming to the binding motif of similar LysR family proteins. These findings showed that CmpR acts as a trans -acting factor that enhances transcription of the photosystem II genes involved in acclimation to high light, revealing a complex network of gene regulation in the cyanobacterium. [source]