Perifascicular Atrophy (perifascicular + atrophy)

Distribution by Scientific Domains


Selected Abstracts


Vascular pathology in dermatomyositis and anatomic relations to myopathology

MUSCLE AND NERVE, Issue 1 2010
Alan Pestronk MD
Abstract The causes of perifascicular myofiber atrophy and capillary pathology in dermatomyositis are incompletely understood. We studied 11 dermatomyositis muscles by histochemistry, immunohistochemistry, and ultrastructure. We found that endomysial capillaries within regions of perifascicular atrophy are not entirely lost, but they have reduced size, endothelial loss, C5b9 complement deposits, and relatively preserved connective tissue molecules and pericytes. In all muscles, the perimysium varies regionally. Some areas contain intermediate-sized vessels. Others are avascular. In dermatomyositis, vascular perimysium contains abnormal vessel fragments, perivascular inflammation, and increased PECAM-1. Perifascicular myofiber atrophy and capillary pathology are concentrated near the avascular perimysium. We conclude that both perimysial intermediate-sized vessels and endomysial capillaries within regions of perifascicular myofiber atrophy are abnormal in dermatomyositis. Capillary damage and myofiber atrophy are concentrated in regions distant from intermediate-sized perimysial vessels. Chronic immune vascular damage and insufficiency in dermatomyositis may cause ischemia, myofiber atrophy, and capillary damage in "watershed" regions of muscle near the avascular perimysium. Muscle Nerve, 2010 [source]


Interferon-stimulated gene 15 (ISG15) conjugates proteins in dermatomyositis muscle with perifascicular atrophy

ANNALS OF NEUROLOGY, Issue 1 2010
Mohammad Salajegheh MD
Objective We investigated interferon-stimulated gene 15 (ISG15), a poorly understood ubiquitin-like modifier, and its enzymatic pathway in dermatomyositis (DM), an autoimmune disease primarily involving muscle and skin. Methods We generated microarray data measuring transcript abundance for approximately 18,000 genes in each of 113 human muscle biopsy specimens, and studied biopsy specimens and cultured skeletal muscle using immunohistochemistry, immunoblotting proteomics, real-time quantitative polymerase chain reaction, and laser-capture microdissection. Results Transcripts encoding ISG15-conjugation pathway proteins were markedly upregulated in DM with perifascicular atrophy (DM-PFA) muscle (ISG15 339-fold, HERC5 62-fold, and USP18 68-fold) compared with 99 non-DM samples. Combined analysis with publicly available microarray datasets showed that >50-fold ISG15 transcript elevation had 100% sensitivity and specificity for 28 biopsies from adult DM-PFA and juvenile DM patients compared with 199 muscle samples from other muscle diseases. Free ISG15 and ISG15-conjugated proteins were only found on immunoblots from DM-PFA muscle. Cultured human skeletal muscle exposed to type 1 interferons produced similar transcripts and ISG15 protein and conjugates. Laser-capture microdissection followed by proteomic analysis showed deficiency of titin in DM perifascicular atrophic myofibers. Interpretation A large-scale microarray study of muscle samples demonstrated that among a diverse group of muscle diseases DM was uniquely associated with upregulation of the ISG15 conjugation pathway. Exposure of human skeletal muscle cell culture to type 1 interferons produced a molecular picture highly similar to that seen in human DM muscle. Perifascicular atrophic myofibers in DM were deficient in a number of skeletal muscle proteins including titin. ANN NEUROL 2010;67:53,63 [source]


Expression of the dermatomyositis autoantigen Mi-2 in regenerating muscle

ARTHRITIS & RHEUMATISM, Issue 12 2009
Andrew L. Mammen
Objective Autoantibodies against the chromatin remodeler Mi-2 are found in a distinct subset of patients with dermatomyositis (DM). Previous quantitative immunoblotting experiments demonstrated that Mi-2 protein levels are up-regulated in DM muscle. This study was undertaken to define the population of cells expressing high levels of Mi-2 in DM muscle and to explore the regulation and functional role of Mi-2 during muscle regeneration. Methods The expression of Mi-2 was analyzed by immunofluorescence microscopy in human muscle biopsy specimens. In an experimental mouse model, cardiotoxin was used to induce muscle injury and repair, and expression of Mi-2 during muscle regeneration was studied in this model by immunofluorescence and immunoblotting analyses. In addition, a cell culture system of muscle differentiation was utilized to artificially modulate Mi-2 levels during proliferation and differentiation of myoblasts. Results In human DM muscle tissue, increased Mi-2 expression was found preferentially in the myofibers within fascicles affected by perifascicular atrophy, particularly in the centralized nuclei of small perifascicular muscle fibers expressing markers of regeneration. In injured mouse muscle tissue, Mi-2 levels were dramatically and persistently up-regulated during muscle regeneration in vivo. Premature silencing of Mi-2 with RNA interference in vitro resulted in accelerated myoblast differentiation. Conclusion Expression of Mi-2 is markedly up-regulated during muscle regeneration in a mouse model of muscle injury and repair. It is also up-regulated in human DM myofibers expressing markers of regeneration. Results of the in vitro studies indicate that this protein may play a role in modulating the kinetics of myoblast differentiation. Our findings thus suggest that high levels of Mi-2 expression in muscle biopsy tissue from patients with DM reflect the presence of incompletely differentiated muscle cells. [source]