PD Solutions (pd + solution)

Distribution by Scientific Domains


Selected Abstracts


Biocompatibility Assessment of Peritoneal Dialysis Solutions With a New In Vitro Model of Preconditioned Human HL60 Cells

ARTIFICIAL ORGANS, Issue 7 2009
Sebastian Koball
Abstract The purposes of this study were to test the human promyelocytic cell line HL60 for its usability as a new cell model for the immune barrier of the peritoneum, and to investigate the impact of different peritoneal dialysis (PD) solutions in the model. HL60 cells were stimulated by retinoic acid and recombinant human granulocyte and macrophage colony-stimulating factor to differentiate into neutrophilic granulocytes. Cells were incubated in different commercially available PD solutions. After a 4-h incubation, functional (chemiluminescence phagocytosis) and viability tests (Live-Dead, XTT) were performed. High glucose concentrations (>1.36%) and low pH values (<7.0) appeared to be detrimental for neutrophil functions and for neutrophil viability. There is a quantitative correlation between glucose concentration and the cytotoxicity of standard PD solutions (PD 1.36% glucose shows 42.6% higher chemiluminescence than PD 3.86% glucose [P < 0.05]). PD solution containing icodextrin shows 74.3% higher chemiluminescence than PD 3.86% glucose, and PD solution with amino acids shows 52.4% higher chemiluminescence than PD 3.86% glucose which is a sign for better biocompatibility in these tests (P < 0.05). The test system is useful for biocompatibility investigations of PD solutions and their effect on immune cells, for example, neutrophil granulocytes. It does not depend on donor variability and availability in comparison to models based on primary isolated leukocytes. [source]


Glycosaminoglycans and the peritoneaum

NEPHROLOGY, Issue 5 2002
Susan YUNG
SUMMARY: The introduction of peritoneal dialysis (PD) over two decades ago has allowed us to manipulate the peritoneal membrane to perform as a continuous dialysing organ. to maximize the efficacy of solute transport and waste removal, conventional PD fluids require unphysiological concentrations of glucose to provide the osmotic drive, lactate to alleviate metabolic acidosis, and a low pH to prevent the caramelization of glucose during the preparation of the solutions. These factors either alone or in combination, are irritants to the peritoneal membrane. Thus, continuous exposure of the peritoneum to PD solutions, together with frequent episodes of peritonitis confers a chronic inflammatory response within the peritoneum. It is, therefore, not unexpected that with time, long-term PD patients develop structural and functional changes within the peritoneum, which in many cases develop into peritoneal fibrosis of varying degrees and compromises the peritoneal membrane as a dialysing organ. to date, numerous studies have investigated methods to improve the efficiency of PD and preserve the structure of the peritoneal membrane. Recently, a number of reports have documented the beneficial effects of intraperitoneal administration of glycosaminoglycans (GAGs) on both the structural and functional qualities of the peritoneum. In this context, GAGs have been demonstrated to inhibit collagen synthesis within the peritoneum, decrease peritoneal advanced glycosylated end-products (AGE) deposition, and modulate cytokine and growth factor synthesis. This review will examine the available data with regards to the potential role of GAGs in maintaining ultrafiltration, solute transport and the structural integrity of the peritoneum. [source]


Biocompatibility Assessment of Peritoneal Dialysis Solutions With a New In Vitro Model of Preconditioned Human HL60 Cells

ARTIFICIAL ORGANS, Issue 7 2009
Sebastian Koball
Abstract The purposes of this study were to test the human promyelocytic cell line HL60 for its usability as a new cell model for the immune barrier of the peritoneum, and to investigate the impact of different peritoneal dialysis (PD) solutions in the model. HL60 cells were stimulated by retinoic acid and recombinant human granulocyte and macrophage colony-stimulating factor to differentiate into neutrophilic granulocytes. Cells were incubated in different commercially available PD solutions. After a 4-h incubation, functional (chemiluminescence phagocytosis) and viability tests (Live-Dead, XTT) were performed. High glucose concentrations (>1.36%) and low pH values (<7.0) appeared to be detrimental for neutrophil functions and for neutrophil viability. There is a quantitative correlation between glucose concentration and the cytotoxicity of standard PD solutions (PD 1.36% glucose shows 42.6% higher chemiluminescence than PD 3.86% glucose [P < 0.05]). PD solution containing icodextrin shows 74.3% higher chemiluminescence than PD 3.86% glucose, and PD solution with amino acids shows 52.4% higher chemiluminescence than PD 3.86% glucose which is a sign for better biocompatibility in these tests (P < 0.05). The test system is useful for biocompatibility investigations of PD solutions and their effect on immune cells, for example, neutrophil granulocytes. It does not depend on donor variability and availability in comparison to models based on primary isolated leukocytes. [source]