Number Average Molecular Weight (number + average_molecular_weight)

Distribution by Scientific Domains


Selected Abstracts


Characterization of perfluoroalkyl acrylic oligomers by electrospray ionization time-of-flight mass spectrometry

RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 7 2008
Timothy J. Romack
Electrospray ionization time-of-flight mass spectrometry (ESI-ToF-MS) has been successfully employed for the characterization of molecular weight, molecular weight distribution and end groups for bromine-terminated perfluoroalkyl acrylate oligomers prepared using atom transfer radical polymerization. Intact oligomers and smaller quantities of common side products were observed from m/z 1000 to 4000 cationized with a sodium ion, a difluorobenzyl cation or a proton with a minimum of multiply charged species. Number average molecular weight and weight average molecular weight for both the samples that were characterized were in reasonable agreement with independent measurements conducted using GPC-MALS and 1H NMR spectroscopy. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Characterization of new acrylic bone cements prepared with oleic acid derivatives

JOURNAL OF BIOMEDICAL MATERIALS RESEARCH, Issue 2 2002
Blanca Vázquez
Abstract Acrylic bone-cement formulations were prepared with the use of a new tertiary aromatic amine derived from oleic acid, and also by incorporating an acrylic monomer derived from the same acid with the aim of reducing the leaching of toxic residuals and improving mechanical properties. 4-N,N dimethylaminobenzyl oleate (DMAO) was used as an activator in the benzoyl-peroxide radical cold curing of polymethyl methacrylate. Cements that contained DMAO exhibited much lower polymerization exotherm values, ranging between 55 and 62 °C, with a setting time around 16,17 min, depending on the amine/BPO molar ratio of the formulation. On curing a commercial bone cement, Palacos® R with DMAO, a decrease of 20 °C in peak temperature and an increase in setting time of 7 min were obtained, the curing parameters remaining well within limits permitted by the standards. In a second stage, partial substitution of MMA by oleyloxyethyl methacrylate (OMA) in the acrylic formulations was performed, the polymerization being initiated with the DMAO/BPO redox system. These formulations exhibited longer setting times and lower peak temperatures with respect to those based on PMMA. The glass transition temperature of the experimental cements were lower than that of PMMA cement because of the presence of long aliphatic chains of both activator and monomer in the cement matrix. Number average molecular weights of the cured cements were in the range of 1.2×105. PMMA cements cured with DMAO/BPO revealed a significant (p<0.001) increase in the strain to failure and a significant (p<0.001) decrease in Young's modulus in comparison to Palacos® R, whereas ultimate tensile strength remained unchanged. When the monomer OMA was incorporated, low concentrations of OMA provided a significant increase in tensile strength and elastic modulus without impairing the strain to failure. The results demonstrate that the experimental cements based on DMAO and OMA have excellent promise for use as orthopaedic and/or dental grouting materials. © 2002 Wiley Periodicals, Inc. J Biomed Mater Res (Appl Biomater) 63: 88,97, 2002; DOI 10.1002/jbm.10092 [source]


Influence of Molecular Weight on the Performance of Organic Solar Cells Based on a Fluorene Derivative

ADVANCED FUNCTIONAL MATERIALS, Issue 13 2010
Christian Müller
Abstract The performance of organic photovoltaic (OPV) bulk-heterojunction blends comprising a liquid-crystalline fluorene derivative and a small-molecular fullerene is found to increase asymptotically with the degree of polymerization of the former. Similar to various thermodynamic transition temperatures as well as the light absorbance of the fluorene moiety, the photocurrent extracted from OPV devices is found to strongly vary with increasing oligomer size up to a number average molecular weight, Mn,,,10,kg,mol,1, but is rendered less chain-length dependent for higher Mn as the fluorene derivative gradually adopts polymeric behavior. [source]


Using hydroxypropyl-,-cyclodextrin for the preparation of hydrophobic poly(ketoethyl methacrylate) in aqueous medium

JOURNAL OF APPLIED POLYMER SCIENCE, Issue 5 2010
Lei Ding
Abstract This work was committed to the polymerization of hydrophobic ketoethyl methacrylate monomer in aqueous medium in the presence of cyclodextrin, instead of polymerizing the monomer in toxic and volatile organic solvents. For this purpose, a new ketoethyl methacrylate monomer, p -methylphenacylmethacrylate (MPMA), was synthesized from the reaction of p -methylphenacylbromide with sodium methacrylate in the presence of triethylbenzylammonium chloride. The monomer was identified with FTIR, 1H and 13C-NMR spectroscopies. Hydroxypropyl-,-cyclodextrin (HPCD) was used to form a water-soluble host/guest inclusion complex (MPMA/HPCD) with the hydrophobic monomer. The complex was identified with FTIR and NMR techniques and polymerized in aqueous medium using potassium persulfate as initiator. During polymerization the resulting hydrophobic methacrylate polymer precipitated out with a majority of HPCD left in solution and a minority of HPCD bonded on the resulting polymer. The thus-prepared polymer exhibited little difference from the counterparts obtained in organic solvent in number average molecular weight (Mn), polydispersity (Mw/Mn) and yield. The investigation provides a novel strategy for preparing hydrophobic ketoethyl methacrylate polymer in aqueous medium by using a monomer/HPCD inclusion complex. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 [source]


Synthesis and characterization of low relative molecular weight trans -1,4-poly(isoprene)

JOURNAL OF APPLIED POLYMER SCIENCE, Issue 6 2008
Huafeng Shao
Abstract Low relative molecular weight trans-1,4-polyisoprene oligomers were synthesized successfully by bulk precipitation and solution polymerization with supported titanium catalyst using hydrogen as relative molecular weight modifier. The effects of polymerization conditions on intrinsic viscosity ([,]), catalyst efficiency (CE) and structure of polymer were studied. Increasing the hydrogen pressure resulted in the decrease of [,] of the polymer. With the increasing of hydrogen pressure and reaction temperature, CE decreased but still maintained above 2500 g polymer/g Ti. The percentage composition of (trans-1, 4-unit) in the polymer was over 90% in all results. The crystallinity of polymer was about 50,60% with Tm being about 60°C. The relative molecular weight distribution index (MWD) was quite difference according to the polymerization method. While number average molecular weight (Mn) exceeded 860, polymer turned from viscous materials to fragile wax materials, and then to toughness materials at 1800. Dynamic property testing showed that the additional of this oligomer could increase the wet-skid resistance of the rubber. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 [source]


Synthesis and characterization of novel poly(arylene ether)s based on 9,10-bis-(4-fluoro-3-trifluoromethylphenyl) anthracene and 2,7-bis-(4-fluoro-3-trifluoromethylphenyl) fluorene

JOURNAL OF APPLIED POLYMER SCIENCE, Issue 1 2007
Arun K. Salunke
Abstract Two new bisfluoro monomers 9,10-bis-(4-fluoro-3-trifluoromethylphenyl) anthracene and 2,7-bis-(4-fluoro-3-trifluoromethylphenyl) fluorene have been synthesized by the cross-coupling reaction of 2-fluoro-3-trifluoromethyl phenyl boronic acid with 9,10-dibromo anthracene and 2,7-dibromo fluorine, respectively. These two bisfluoro compounds were used to prepare several poly(arylene ether)s by aromatic nucleophilic displacement of fluorine with various bisphenols; such as bisphenol-A, bisphenol-6F, bishydroxy biphenyl, and 9,9-bis-(4-hydroxyphenyl)-fluorene. The products obtained by displacement of the fluorine atoms exhibits weight-average molar masses up to 1.5 ×105 g mol,1 and number average molecular weight up to 6.8 × 104 g mol,1 in GPC. These poly(arylene ether)s show very high thermal stability even up to 490°C for 5% weight loss occurring at this temperature in TGA in synthetic air and showed glass transition temperature observed up to 310°C. All the polymers are soluble in a wide range of organic solvents, e.g., CHCl3, THF, NMP, and DMF. Films cast from DMF solution are brittle in nature. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007 [source]


Cationic polymerization in rotating packed bed reactor: Experimental and modeling

AICHE JOURNAL, Issue 4 2010
Jian-Feng Chen
Abstract On the basis of analysis of key engineering factors predominating in cationic polymerization, butyl rubber (IIR) as an example was synthesized by cationic polymerization in the high-gravity environment generated by a rotating packed bed (RPB) reactor. The influence of the rotating speed, packing thickness, and polymerization temperature on the number average molecular weight (Mn) of IIR was studied. The optimum experimental conditions were determined as rotating speed of 1200 r min,1, packing thickness of 40 mm and polymerization temperature of 173 K, where IIR with Mn of 289,000 and unimodal molecular weight distribution of 1.99 was obtained. According to the experimental results and elementary reactions, a model for the prediction of Mn was developed, and the validity of the model was confirmed by the fact that most of the predicted Mns agreed well with the experimental data with a deviation within 10%. © 2009 American Institute of Chemical Engineers AIChE J, 2010 [source]


Synthesis of comb polymers via grafting-onto macromolecules bearing pendant diene groups via the hetero-Diels-Alder-RAFT click concept

JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 8 2010
Antoine Bousquet
Abstract Comb polymers were synthesized by the "grafting-onto" method via a combination of Reversible Addition-Fragmentation Chain Transfer (RAFT) polymerization and the hetero-Diels-Alder (HDA) cycloaddition. The HDA reactive monomer trans, trans-hexa-2,4-dienylacrylate (ttHA) was copolymerized with styrene via the RAFT process. Crosslinking was minimized by decreasing the monomer concentration,whilst keeping monomer to polymer conversions low,resulting in reactive backbones with on average one reactive pendant diene groups for 10 styrene units. The HDA cycloaddition was performed between the diene functions of the copolymer and a poly(n -butyl acrylate) (PnBA) prepared via RAFT polymerization with pyridin-2-yldithioformate, which can act as a dienophile. The coupling reactions were performed within 24 h at 50 °C and the grafting yield varies from 75% to 100%, depending on the number average molecular weight of the PnBA (3500 g mol,1 < Mn < 13,000 g mol,1) grafted chain and the reaction stoichiometry. The molecular weights of the grafted block copolymers range from 19,000 g mol,1 to 58,000 g mol,1 with polydispersities close to 1.25. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1773,1781, 2010 [source]


Synthesis of high glass transition temperature copolymers based on poly(vinyl chloride) via single electron transfer,Degenerative chain transfer mediated living radical polymerization (SET-DTLRP) of vinyl chloride in water

JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 24 2009
Jorge F. J. Coelho
Abstract ,,,-di(iodo) poly(isobornyl acrylate) macroiniators (,,,-di(iodo)PIA) with number average molecular weight from Mn,TriSEC = 11,456 to Mn,TriSEC = 94,361 were synthesized by single electron transfer-degenerative chain transfer mediated living radical polymerization (SET-DTLRP) of isobornyl acrylate (IA) initiated with iodoform (CHI3) and catalyzed by sodium dithionite (Na2S2O4) in water at 35 °C. The plots of number average molecular weight vs conversion and ln{[M]0/[M]} vs time are linear, indicating a controlled polymerization. ,,,-di(iodo) poly(isobornyl acrylate) have been used as a macroinitiator for the SET-DTLRP of vinyl chloride (VCM) leading to high Tg block copolymers PVC-b-PIA-b-PVC. The dynamic mechanical thermal analysis of the block copolymers suggests just one phase indicating that copolymer behaves as a single material. This technology provides the possibility of synthesizing materials based on PVC with higher Tg in aqueous medium. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2009 [source]


Determination of block size in poly(ethylene oxide)- b -polystyrene block copolymers by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry

JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 13 2009
Marion Girod
Abstract Characterization of block size in poly(ethylene oxide)- b -poly(styrene) (PEO- b -PS) block copolymers could be achieved by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) after scission of the macromolecules into their constituent blocks. The performed hydrolytic cleavage was demonstrated to specifically occur on the targeted ester function in the junction group, yielding two homopolymers consisting of the constitutive initial blocks. This approach allows the use of well-established MALDI protocols for a complete copolymer characterization while circumventing difficulties inherent to amphiphilic macromolecule ionization. Although the labile end-group in PS homopolymer was modified by the MALDI process, PS block size could be determined from MS data since polymer chains were shown to remain intact during ionization. This methodology has been validated for a PEO- b -PS sample series, with two PEO of number average molecular weight (Mn) of 2000 and 5000 g mol,1 and Mn(PS) ranging from 4000 to 21,000 g mol,1. Weight average molecular weight (Mw), and thus polydispersity index, could also be reached for each segment and were consistent with values obtained by size exclusion chromatography. This approach is particularly valuable in the case of amphiphilic copolymers for which Mn values as determined by liquid state nuclear magnetic resonance might be affected by micelle formation. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3380,3390, 2009 [source]


Poly(arylene sulfide)s by nucleophilic aromatic substitution polymerization of 2,7-difluorothianthrene

JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 9 2009
Maxwell J. Robb
Abstract Poly(thianthrene phenylene sulfide) and poly(thianthrene sulfide) have been prepared by nucleophilic aromatic substitution polymerization of the activated monomer 2,7-difluorothianthrene with bis thiophenoxide and sulfide nucleophiles, respectively. The resulting polymers are thermally stable, amorphous materials that have been characterized by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), gel permeation chromatography (GPC), matrix-assisted laser desorption/ionization-time-of-flight (MALDI-TOF) mass spectrometry, UV-Vis spectroscopy, refractometry, and intrinsic viscosity (IV) measurements. The polymers produced exhibit 5% weight loss values approaching 500 °C in inert and air atmospheres and glass transition temperatures that range from 149 to 210 °C. Poly(thianthrene phenylene sulfide) with a number average molecular weight of 22,100 g/mol has been synthesized with an IV in DMPU of 0.62 dL/g at 30 °C. Creasable films of this polymer have been prepared by solvent casting and melt pressing at 250 °C. Films of poly(thianthrene phenylene sulfide) exhibit transparencies greater than 50% at wavelengths exceeding 400 nm and a high refractive index value of 1.692 at a wavelength of 633 nm, making the polymer interesting for optical applications. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2453,2461, 2009 [source]


Biodegradable polymers based on renewable resources.

JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 17 2005

Abstract Novel polycarbonates, with pendant functional groups, based on 1,4:3,6-dianhydrohexitols and L -tartaric acid derivatives were synthesized. Solution polycondensations of 1,4:3,6-dianhydro-bis- O -(p -nitrophenoxycarbonyl)hexitols and 2,3-di- O -methyl- L -threitol or 2,3- O -isopropylidene- L -threitol afforded polycarbonates having pendant methoxy or isopropylidene groups, respectively, with number average molecular weight (Mn) values up to 3.61 × 104. Subsequent acid-catalyzed deprotection of isopropylidene groups gave well-defined polycarbonates having pendant hydroxyl groups regularly distributed along the polymer chain. Differential scanning calorimetry (DSC) demonstrated that all the polycarbonates were amorphous with glass transition temperatures ranging from 57 to 98 °C. Degradability of the polycarbonates was assessed by hydrolysis test in phosphate buffer solution at 37 °C and by biochemical oxygen demand (BOD) measurements in an activated sludge at 25 °C. In both tests, the polycarbonates with pendant hydroxyl groups were degraded much faster than the polycarbonates with pendant methoxy and isopropylidene groups. It is noteworthy that degradation of the polycarbonates with pendant hydroxyl groups was remarkably fast. They were completely degraded within only 150 min in a phosphate buffer solution and their BOD-biodegradability reached nearly 70% in an activated sludge after 28 days. The degradation behavior of the polycarbonates is discussed in terms of their chemical and physical properties. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3909,3919, 2005 [source]


Grafting of maleic anhydride onto linear polyethylene: A Monte Carlo study

JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 22 2004
Yutian Zhu
Abstract Monte Carlo simulation was used to study the graft of maleic anhydride (MAH) onto linear polyethylene (PE-g-MAH) initiated by dicumyl peroxide (DCP). Simulation results revealed that major MAH monomers attached onto PE chains as branched graft at higher MAH content. However, at extremely low MAH content, the fraction of bridged graft was very close to that of branched graft. This conclusion was somewhat different from the conventional viewpoint, namely, the fraction of bridged graft was always much lower than that of branched graft under any condition. Moreover, the results indicated that the grafting degree increased almost linearly to MAH and DCP concentrations. On the other hand, it was found that the amount of grafted MAH dropped sharply with increasing the length of grafted MAH, indicating that MAH monomers were mainly attached onto the PE chain as single MAH groups or very short oligomers. With respect to the crosslink of PE, the results showed that the fraction of PE-(MAH)n -PE crosslink structure increased continuously, and hence the fraction of PE-PE crosslink decreased with increasing MAH concentration. Finally, quantitative relationship among number average molecular weight of the PE, MAH, and DCP contents was given. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5714,5724, 2004 [source]


Novel, biodegradable, functional poly(ester-carbonate)s by copolymerization of trans -4-hydroxy- L -proline with cyclic carbonate bearing a pendent carboxylic group

JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 10 2004
Ren-Shen Lee
Abstract Water-soluble poly(ester-carbonate) having pendent amino and carboxylic groups on the main-chain carbon is reported for the first time. This article describes the melt ring-opening/condensation reaction of trans -4-hydroxy- N -benzyloxycarbonyl- L -proline (N -CBz-Hpr) with 5-methyl-5-benzyloxycarbonyl-1,3-dioxan-2-one (MBC) at a wide range of molar fractions. The influence of reaction conditions such as catalyst concentration, polymerization time, and temperature on the number average molecular weight (Mn) and molecular weight distribution (Mw/Mn) of the copolymers was investigated. The polymerizations were carried out in bulk at 110 °C with 3 wt % stannous octoate as a catalyst for 16 h. The poly(ester-carbonate)s obtained were characterized by Fourier transform infrared spectroscopy, 1H NMR, differential scanning calorimetry, and gel permeation chromatography. The copolymers synthesized exhibited moderate molecular weights (Mn = 6000,14,700 g mol,1) with reasonable molecular weight distributions (Mw/Mn = 1.11,2.23). The values of the glass-transition temperature (Tg) of the copolymers depended on the molar fractions of cyclic carbonate. When the MBC content decreased from 76 to 12 mol %, the Tg increased from 16 to 48 °C. The relationship between the poly(N -CBz-Hpr- co -MBC) Tg and the compositions was in approximation with the Fox equation. In vitro degradation of these poly(N -CBz-Hpr- co -MBC)s was evaluated from weight-loss measurements and the change of Mn and Mw/Mn. Debenzylation of 3 by catalytic hydrogenation led to the corresponding linear poly(ester-carbonate), 4, with pendent amino and carboxylic groups. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2303,2312, 2004 [source]


Chemoenzymatic Synthesis of Fucose- or Rhamnose-Branched Polymer

MACROMOLECULAR BIOSCIENCE, Issue 3-4 2003
Takao Raku
Abstract 6-Deoxy sugars having only secondary alcohols, namely, D -fucose, L -fucose, and L -rhamnose, were regioselectively esterified with divinyl adipate by enzymes. The compounds 2- O -vinyl adipolyl D -fucose and 2- O -vinyl adipolyl L -fucose were effectively produced in dimethylformamide by protease from Bacillus subtilis and Streptomyces griseus. Furthermore, 4- O -vinyl adipolyl L -rhamnose was effectively produced in pyridine by lipase from Pseudomonas sp. Each polymerizable sugar ester was polymerized by 1,1,-azoisobutyronitrile to give polymers having a number average molecular weight of 5,000,14,000. Part of the chemoenzymatic synthesis of poly(6-deoxy sugars). [source]


Synthesis of Polystyrene- block -Poly(methyl methacrylate) with Fluorene at the Junction: Sequential Anionic and Controlled Radical Polymerization from a Single Carbon

MACROMOLECULAR CHEMISTRY AND PHYSICS, Issue 24 2009
Nathan D. Contrella
Abstract Polystyrene- block -poly(methyl methacrylate) (PS- b -PMMA) has been synthesized by sequential anionic and reverse atom transfer radical polymerization (ATRP) or a variation of nitroxide mediated polymerization (NMP) from a single initiating site, specifically the 9-carbon on 2,7-dibromofluorene or fluorene. The addition of the second arm (PS) relied on thermal decomposition of 2,2,-azoisobutyronitrile (AIBN) to generate radicals, abstracting the 9-H on the polymer-bound fluorene species to form the initiating radical. Styrene was not present in the reaction mixture when AIBN was decomposed, preventing competition between addition across the monomeric alkene and hydrogen abstraction from the fluorene. After 1,h, styrene was introduced and mediation of the subsequent radical polymerization was achieved by the presence of CuCl2/ligand or TEMPO. Characterization of the diblock copolymers by gel permeation chromatography (GPC) revealed substantial shifts in number average molecular weight () values compared to the anionically prepared PMMA macroinitiator, while polydispersity indices (PDI's) remained relatively low (typically,<,1.5). Characterization by UV detection with GPC (at 310,nm) verified that the diblock polymer is chromophore-bound, which was further verified by UV-vis spectroscopy of the isolated diblock. [source]


Synthesis and Properties of a New Poly(arylene ethynylene) Containing 1,3,5-Triazine Units,

MACROMOLECULAR CHEMISTRY AND PHYSICS, Issue 6 2004
Qiang Fang
Abstract Summary: A new photoluminescent poly(arylene ethynylene) containing 1,3,5-triazine units was prepared by polycondensation between 2,4-diphenyl-6- N,N -bis(4-bromophenyl)amino-1,3,5-triazine and 1,4-didodecyloxy-2,5-diethynylbenzene using Pd(PPh3)4 and CuI as the catalysts in the presence of triethylamine. The polymer showed good solubility in common organic solvents and had a number average molecular weight, , of 3,400, and a weight average molecular weight, , of 8,100. In toluene the polymer exhibited an intrinsic viscosity [,] of 0.11 dL,·,g,1 at 30,°C. The polymer showed photoluminescence (PL) with emission peaks at 479 nm in CHCl3 and at 509 nm in the solid state; quantum yield of the PL in CHCl3 was 21%. Electrochemical reduction (or n-doping) of the polymer started at about ,2.05 V versus Ag/AgNO3 and gave a peak at ,2.30 V versus Ag/AgNO3. The 1,2,3-triazine unit-containing poly(arylene ethynylene) (PATZ) polymer synthesized and investigated here. [source]


Model Development in Thermal Styrene Polymerization

MACROMOLECULAR SYMPOSIA, Issue 1 2007
Bryan Matthews
Abstract Summary: The thermal polymerization of styrene is usually modeled by relying on a reaction scheme and a set of equations that were developed more than three decades ago by Hui and Hamielec. Many detailed models of styrene polymerization are available in the open literature and they are mostly based on the work of Hui and Hamielec, which nearly makes this the standard to follow in explaining the behavior of polystyrene reactors. The model of Hui and Hamielec does a very nice job of describing monomer conversion data but discrepancies are seen between observed and predicted values of number and weight average molecular weights, Mn and Mw. Discrepancies in number average molecular weight seem to be the result of random noise. Discrepancies in weight average molecular weight grow as the polymerization temperature decreases and some of the trends observed in the residuals over the entire temperature range cannot be attributed to random noise. Hui and Hamielec attributed the observed deficiencies to a standard deviation of ±10% in their GPC measurements. A new data set with an experimental error of 2% for average molecular weights is presented. The set contains measured values of Mn, Mw and Mz, so the polymerization scheme has been extended to include third order moments. The data set also includes the effect of ethylbenzene as a chain transfer agent. We present the results of comparing model predictions to our measurements and the adjustments made in the original set of kinetic parameters published by Hui and Hamielec. [source]


Simulation of Styrene Polymerization by Monomolecular and Bimolecular Nitroxide-Mediated Radical Processes over a Range of Reaction Conditions

MACROMOLECULAR THEORY AND SIMULATIONS, Issue 2 2007
Juliana Belincanta-Ximenes
Abstract Simulations of polymerization rate, molecular weight development and evolution of the concentrations of species participating in the reaction mechanism over a range of operating conditions, and a parameter sensitivity analysis showing the effects of temperature, activation/deactivation equilibrium constant and initial concentrations of controller and initiator (if present) on these variables are presented for the nitroxide-mediated radical polymerization of styrene. The simulations were performed with a computer program based on a detailed reaction mechanism. The simulated profiles of conversion, number average molecular weight (), and polydispersity agree well with experimental data. Previously unknown activation energies for reactions involved in the mechanism are estimated. The temperature dependence of the kinetic rate constants obtained in this study will be useful for future modeling and optimization studies. [source]


Effect of poly(ethylene glycol) on the solid-state polymerization of poly(ethylene terephthalate)

POLYMER INTERNATIONAL, Issue 3 2006
E Bhoje Gowd
Abstract Poly(ethylene glycol) (PEG) and end-capped poly(ethylene glycol) (poly(ethylene glycol) dimethyl ether (PEGDME)) of number average molecular weight 1000 g mol,1 was melt blended with poly(ethylene terephthalate) (PET) oligomer. NMR, DSC and WAXS techniques characterized the structure and morphology of the blends. Both these samples show reduction in Tg and similar crystallization behavior. Solid-state polymerization (SSP) was performed on these blend samples using Sb2O3 as catalyst under reduced pressure at temperatures below the melting point of the samples. Inherent viscosity data indicate that for the blend sample with PEG there is enhancement of SSP rate, while for the sample with PEGDME the SSP rate is suppressed. NMR data showed that PEG is incorporated into the PET chain, while PEGDME does not react with PET. Copyright © 2005 Society of Chemical Industry [source]


Synthesis and anti-HIV activity of sulfated astragalus polysaccharide

POLYMERS FOR ADVANCED TECHNOLOGIES, Issue 7 2003
Guo-Guang Liu
Abstract Sulfated astragalus polysaccharide (sulfated astragalan, SA) was prepared by chemical modification of astragalus polysaccharide abstracted from an astragalus menbranceus used as a Mongolia herbal medicine. Anti-HIV activity of SA was assayed in vitro and the results indicated that the SA showing high anti-HIV activity and lower cytotoxity. Sulfation of astragalan was carried out by using sulfur trioxide-pyridine complex in a mixture of dimethylsulfoxide (DMSO) to give sulfated astragalan with degree of substitution (DS) of 1.14,1.20 and a number average molecular weight (Mn) of 1.27,1.46,×,104. Copyright © 2003 John Wiley & Sons, Ltd. [source]


Synthesis and characterization of new soluble polyamides from an unsymmetrical diamine bearing a bulky triaryl pyridine pendent group

JOURNAL OF APPLIED POLYMER SCIENCE, Issue 6 2010
Mousa Ghaemy
Abstract New unsymmetrical diamine monomer containing triaryl pyridine pendent group, 2,4-diaminophenyl [4-(2, 6-diphenyl-4-pyridyl) phenyl]ether, was synthesized via aromatic substitution reaction of 1-chloro-2,4-dinitrobenzene with 4-(2,6-diphenyl-4-pyridyl) phenol, followed by Pd/C-catalyzed hydrazine reduction. Five Polyamides (PA) were prepared by the phosphorylation polycondensation of different dicarboxylic diacids with the diamine. Inherent viscosities of PAs were in the range 0.51,0.59 g/dL indicating formation of medium molecular weight polymers. The weight and number average molecular weights of a PA, (PA-d), determined by GPC were 6944 g/mol and 17,369 g/mol, respectively. PAs exhibited glass-transition temperatures (Tg) in the range 140,235°C. These polymers, essentially amorphous, were soluble in polar aprotic solvents such as DMF, NMP, DMAc, DMSO, pyridine, m -cresol, and THF. The initial decomposition temperatures (Ti) of PAs, determined by TGA in air, were in the range 300,380°C indicating their good thermal stability. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 [source]


Effects of supplementation of succinic acid on the production and molecular weight distribution of exopolysaccharides by Antrodia camphorata in batch cultures

JOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 2 2005
Chin-Hang Shu
Abstract The effects of organic acid supplementation on both yields and molecular weight distributions of exopolysaccharide (EPS) of Antrodia camphorata were investigated in shaker flasks and air-lift bioreactors. In the shaker flask study, five out of six organic acid-supplemented cultures showed negative effects on cell growth, the exception being pyruvic acid-supplemented culture; lower number average molecular weights (Mn) of EPS were obtained in all the supplemented cultures. EPS production was enhanced by 31% due to the addition of succinic acid. Optimum product yield was obtained between 2.0 and 3.0 g dm,3 succinic acid; however, the specific production of EPS increased monotonically as succinic acid concentration was increased from 0 to 5 g dm,3. Enhancement of EPS yield by 28% and a higher Mn of EPS (around 310 kDa) due to the addition of succinic acid were also demonstrated in an air-lift bioreactor. In addition, a novel fermentation process resistant to EPS degradation is proposed, based on the inhibition of ,-glucanase activity by the supplementation with succinic acid. Copyright © 2004 Society of Chemical Industry [source]


Amphiphilic PEG/alkyl-grafted comb polylactides

JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 22 2007
Xuwei Jiang
Abstract Amphiphilic polylactides (PLAs) with well-defined architectures were synthesized by ring-opening polymerization of AB monomers (glycolides) substituted with both a long chain alkyl group and a triethylene glycol segment terminated in either a methyl or benzyl group. The resulting amphiphilic PLAs had number average molecular weights >100,000 g/mol. DSC analysis revealed a first-order phase transition at , 20 °C, reflecting the crystalline nature of the linear alkyl side chains. Polymeric micelles were prepared by the solvent displacement method in water. Dynamic light scattering measurements support formation of a mixture of 20-nm-diameter unimolecular micelles and 60-nm particles comprised of an estimated 25 polymer molecules. UV,vis characterization of micelles formed from acetone,water solutions containing azobenzene confirmed encapsulation of the hydrophobic dye, suggesting their potential as new amphiphilic PLAs as drug delivery vehicles. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5227,5236, 2007 [source]