Nonviral Gene Delivery (nonviral + gene_delivery)

Distribution by Scientific Domains

Selected Abstracts

Long Chain Pyridinium Salts with a 4-Phenyl Group as Amphiphiles for Potential Nonviral Gene Delivery.

CHEMINFORM, Issue 24 2004
Mariana Viorica Bogatian
Abstract For Abstract see ChemInform Abstract in Full Text. [source]

Spatially patterned gene expression for guided neurite extension

Tiffany Houchin-Ray
Abstract Axon pathfinding by localized expression of guidance molecules is critical for the proper development of the nervous system. In this report, we present a well-defined spatially patterned gene expression system to investigate neurite guidance in vitro. Nonviral gene delivery was patterned by combining substrate-mediated gene delivery with soft lithography techniques, and the amount of protein produced at the region of localized expression was varied by altering the vector concentration and the width of the pattern, highlighting the flexibility of the system. A neuronal coculture model was used to investigate responses to spatial patterns of nerve growth factor (NGF) expression. The soluble NGF gradient elicited a guidance cue, and the degree of guidance was governed by the distance a neuron was cultured from the pattern and the time between accessory cell and neuron seedings. A portion of the diffusible NGF bound to the culture surface in the extracellular space, and the surface-associated NGF supported neuron survival and neurite outgrowth. However, the surface-bound NGF gradient alone did not elicit a guidance signal, and in fact masked the guidance cue by soluble NGF gradients. Mathematical modeling of NGF diffusion was used to predict the concentration gradients, and both the absolute and fractional gradients capable of guiding neurites produced by patterned gene expression differed substantially from the values obtained with existing engineered protein gradients. Spatially patterned gene expression provides a versatile tool to investigate the factors that may promote neurite guidance. 2008 Wiley-Liss, Inc. [source]

Fabrication, characterization and in vitro evaluation of poly(D,L -lactide- co -glycolide) microparticles loaded with polyamidoamine,plasmid DNA dendriplexes for applications in nonviral gene delivery

Janjira Intra
Abstract We report, for the first time, on the preparation, characterization and in vitro testing of poly(D,L -lactide- co -glycolide) (PLGA) microparticles loaded with polyamidoamine (PAMAM),plasmid DNA (pDNA) dendriplexes. Loading of pDNA into the PLGA microparticles increased by 150% when pDNA was first complexed with PAMAM dendrimers relative to loading of pDNA alone. Scanning electron microscopy (SEM) showed that the presence of PAMAM dendrimers in the PLGA microparticles created porous features and indentations on the surface of the microparticles. Loading PLGA microparticles with PAMAM,pDNA dendriplexes lowered the average PLGA microparticle size and changed the surface charge of the microparticles from negative to positive when compared to PLGA microparticles loaded with pDNA alone. The zetapotential and buffering capacity of the microparticles increased as the generation of the PAMAM dendrimer loaded in the PLGA microparticles increased. Gel electrophoresis assays showed that all the PLGA microparticle formulations were able to entrap the pDNA within the PLGA matrix. There was no significant difference in the cytotoxicity of PLGA microparticles loaded with PAMAM,pDNA dendriplexes when compared to PLGA microparticles loaded with pDNA alone. Furthermore, and in contrast to PAMAM dendrimers alone, the generation of the PAMAM dendrimer loaded in the PLGA microparticles had no significant impact on cytotoxicity or transfection efficiencies in human embryonic kidney (HEK293) or Monkey African green kidney fibroblast-like (COS7) cells. The transfection efficiency of PLGA microparticles loaded with generation 3 (G3) PAMAM,pDNA dendriplexes was significantly higher than PLGA microparticles loaded with pDNA alone in HEK293 and COS7 cells. PLGA microparticles loaded with G3 PAMAM,pDNA dendriplexes generated equivalent transfection efficiencies as (G3 to G6) PAMAM,pDNA dendriplexes alone in COS7 cells when the transfection was carried out in serum containing media. The delivery system developed in this report has low toxicity, high pDNA loading efficiencies and high transfection efficiencies that are not reduced in the presence of serum. A delivery system with these characteristics is expected to have significant potential for translational applications. 2009 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 99:368,384, 2010 [source]

Brush-Like Amphoteric Poly[isobutylene- alt -(maleic acid)- graft -oligoethyleneamine)]/DNA Complexes for Efficient Gene Transfection

Majad Khan
Abstract Synthetic gene delivery vectors, especially cationic polymers have attracted enormous attention in recent decades because of their ease of manufacture, targettability, and scaling up. However, certain issues such as high cytotoxicity and low transfection efficiency problems have hampered the advance of nonviral gene delivery. In this study, we designed and synthesized brush-like amphoteric poly[isobutylene- alt -(maleic acid)- graft -oligoethyleneamine] capable of mediating highly efficient gene transfection. The polymers are composed of multiple pendant oligoethyleneimine molecules with alternating carboxylic acid moiety grafted onto poly[isobutylene- alt -(maleic anhydride)]. The polymer formed from pentaethylenehexamine {i.e., poly[isobutylene- alt -(maleic acid)- graft -pentaethylenehexamine)]} was able to condense DNA efficiently into nanoparticles of size around 200,nm with positive zeta potential of about 28,30,mV despite its amphoteric nature. Luciferase expression level and percentage of GFP expressing cells induced by this polymer was higher than those mediated with polyethyleneimine (branched, 25,kDa) by at least one order of magnitude at their optimal N/P ratios on HEK293, HepG2, and 4T1 cells. In vitro cytotoxicity testing revealed that the polymer/DNA complexes were less cytotoxic than those of PEI, and the viability of the cells after being incubated with the polymer/DNA complexes at the optimal N/P ratios was higher than 85%. This polymer can be a promising gene delivery carrier for gene therapy. [source]

Surface Plasmon Resonance Spectroscopy as a Tool to Study Polyplex-Glycoaminoglycan Interactions

Peter Dubruel
Abstract Summary: This article reports the application of surface plasmon resonance (SPR) to monitor the interaction between polymer-DNA complexes and glycoaminoglycans (GAG). The GAG selected was hyaluronic acid (HA). First a HA derivative containing a disulfide linkage was synthesized, enabling chemisorption onto a gold surface. Next, the interaction between different complexes (prepared using PEI or PDMAEMA) and HA was studied using SPR. This study clearly indicates that GAG-polyplex interactions depend on the type of polymer selected and on the charge ratio of the polyplexes prepared. The derivative developed opens up new perspectives in the field of nonviral gene delivery. [source]

pFARs, Plasmids free of antibiotic resistance markers, display high-level transgene expression in muscle, skin and tumour cells

Corinne Marie
Abstract Background Nonviral gene therapy requires a high yield and a low cost production of eukaryotic expression vectors that meet defined criteria such as biosafety and quality of pharmaceutical grade. To fulfil these objectives, we designed a novel antibiotic-free selection system. Methods The proposed strategy relies on the suppression of a chromosomal amber mutation by a plasmid-borne function. We first introduced a nonsense mutation into the essential Escherichia coli thyA gene, resulting in thymidine auxotrophy. The bacterial strain was optimized for the production of small and novel plasmids free of antibiotic resistance markers (pFARs) and encoding an amber suppressor t-RNA. Finally, the potentiality of pFARs as eukaryotic expression vectors was assessed by monitoring luciferase activities after electrotransfer of LUC-encoding plasmids into various tissues. Results The introduction of pFARs into the optimized bacterial strain restored normal growth to the auxotrophic mutant and allowed an efficient production of monomeric supercoiled plasmids. The electrotransfer of LUC-encoding pFAR into muscle led to high luciferase activities, demonstrating an efficient gene delivery. In transplanted tumours, transgene expression levels were superior after electrotransfer of the pFAR derivative compared to a plasmid carrying a kanamycin resistance gene. Finally, in skin, whereas luciferase activities decreased within 3 weeks after intradermal electrotransfer of a conventional expression vector, sustained luciferase expression was observed with the pFAR plasmid. Conclusions Thus, we have designed a novel strategy for the efficient production of biosafe plasmids and demonstrated their potentiality for nonviral gene delivery and high-level transgene expression in several tissues. Copyright 2010 John Wiley & Sons, Ltd. [source]