Net Erosion (net + erosion)

Distribution by Scientific Domains


Selected Abstracts


Accounting for uncertainty in DEMs from repeat topographic surveys: improved sediment budgets

EARTH SURFACE PROCESSES AND LANDFORMS, Issue 2 2010
Joseph M. Wheaton
Abstract Repeat topographic surveys are increasingly becoming more affordable, and possible at higher spatial resolutions and over greater spatial extents. Digital elevation models (DEMs) built from such surveys can be used to produce DEM of Difference (DoD) maps and estimate the net change in storage terms for morphological sediment budgets. While these products are extremely useful for monitoring and geomorphic interpretation, data and model uncertainties render them prone to misinterpretation. Two new methods are presented, which allow for more robust and spatially variable estimation of DEM uncertainties and propagate these forward to evaluate the consequences for estimates of geomorphic change. The first relies on a fuzzy inference system to estimate the spatial variability of elevation uncertainty in individual DEMs while the second approach modifies this estimate on the basis of the spatial coherence of erosion and deposition units. Both techniques allow for probabilistic representation of uncertainty on a cell-by-cell basis and thresholding of the sediment budget at a user-specified confidence interval. The application of these new techniques is illustrated with 5 years of high resolution survey data from a 1,km long braided reach of the River Feshie in the Highlands of Scotland. The reach was found to be consistently degradational, with between 570 and 1970,m3 of net erosion per annum, despite the fact that spatially, deposition covered more surface area than erosion. In the two wetter periods with extensive braid-plain inundation, the uncertainty analysis thresholded at a 95% confidence interval resulted in a larger percentage (57% for 2004,2005 and 59% for 2006,2007) of volumetric change being excluded from the budget than the drier years (24% for 2003,2004 and 31% for 2005,2006). For these data, the new uncertainty analysis is generally more conservative volumetrically than a standard spatially-uniform minimum level of detection analysis, but also produces more plausible and physically meaningful results. The tools are packaged in a wizard-driven Matlab software application available for download with this paper, and can be calibrated and extended for application to any topographic point cloud (x,y,z). Copyright © 2009 John Wiley & Sons, Ltd. [source]


Airborne dust deposition in the Okavango Delta, Botswana, and its impact on landforms

EARTH SURFACE PROCESSES AND LANDFORMS, Issue 5 2004
M. Krah
Abstract This study investigated the local-scale generation and movement of dust in the seasonal swamps of the Okavango Delta, Botswana, with a view to examining possible transfer of material between ,ood plains and islands. It was found that most of the dust load was carried in the lowest 3 m of the air column, and consisted mainly of amorphous silica, indicating that dust was generated largely on the ,ood plains. Dust loads were found to be highest above the ,ood plains and lowest over the interiors of islands, probably due to the baf,ing effect of the island trees on wind velocity. The contrast in dust loads between islands and ,ood plains suggests that there is a net transfer of dust from ,ood plains to islands, but it was not possible to quantify this transfer. It is evident, however, that ,ood plains experience net erosion and islands net aggradation. A strong seasonality in dust loads was observed, with the maximum dust loads coinciding with maximum wind velocity in October. This also coincides with peak seasonal ,ooding in the delta, and only non-inundated ,ood plains are capable of generating dust. Years of low ,ood therefore appear to be more dusty. There may also be transfer of material from higher-lying to lower-lying ,ood plains, which may reduce the topographic contrast on the ,ood plains. Copyright © 2004 John Wiley & Sons, Ltd. [source]


The effects of temporal and spatial patterns of Holocene erosion and alluviation on the archaeological record of the Central and Eastern Great Plains, U.S.A.

GEOARCHAEOLOGY: AN INTERNATIONAL JOURNAL, Issue 2 2002
E. Arthur Bettis III
Patterns of erosion and deposition act as a filter that strongly influences the disposition of the archaeological record of the Central and Eastern Plains of the North American Midcontinent. Detailed studies of alluvial valley stratigraphy in four drainage basins in the region reveal temporal and spatial patterns of fluvial system behavior that control the preservation and visibility of past human activity. These basins are located on a 600-km-long longitudinal gradient extending from semiarid southwestern Kansas to moist-subhumid central Iowa. Despite significant environmental variability along this transect, basin-wide patterns of Holocene erosion and deposition are similar across the study area. From ca. 11,000 to 8000 yr B.P., aggradation, punctuated by slow alluviation and/or stability around 10,000 yr B.P., was the dominant process in large and some small valleys. The early and middle Holocene (ca. 8000,5000 yr B.P.) was a period of net erosion and sediment movement in small valleys, sediment storage in large valleys, and episodic aggradation on alluvial fans. During the late Holocene (post-5000 yr B.P.), alluvial fans stabilized, small valleys became zones of net sediment storage, and aggradation slowed in large valleys. Basin-wide aggradation followed by entrenchment and channel migration characterizes fluvial activity during the Historic period. Consideration of the effects of these temporal and spatial patterns of Holocene erosion and alluviation on the archaeological record is crucial for developing efficient cultural resource sampling strategies and for accurately interpreting the archaeological record. © 2002 John Wiley & Sons, Inc. [source]


THE TWO-DIMENSIONAL UPLAND EROSION MODEL CASC2D-SED,

JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 1 2000
Billy E. Johnson
ABSTRACT: The two-dimensional soil erosion model CASC2D-SED simulates the dynamics of upland erosion during single rainstorms. The model is based on the raster-based surface runoff calculations from CASC2D. Rainfall precipitation is distributed in time and space. Infiltration is calculated from the Green-Ampt equations. Surface runoff is calculated from the diffusive wave approximation to the Saint-Venant equations in two-dimensions. Watershed data bases in raster Geographical Information System (GIS) provide information on the soil type, size fractions, soil erodibility, cropping management, and conservation practice factors for soil erosion calculations. Upland sediment transport is calculated for the size fractions (sand, silt, and clay), and the model displays the sediment flux, the amount of suspended sediment, and the net erosion and deposition using color graphics. The model has been tested on Goodwin Creek, Mississippi. The peak discharge and time to peak are within ± 20 percent and sediment transport rates within ,50 percent to 200 percent. [source]


Evolution of the Irrawaddy delta region since 1850

THE GEOGRAPHICAL JOURNAL, Issue 2 2010
PETER J HEDLEY
We present a time series of coastline change for the Irrawaddy delta region of Myanmar using the earliest available navigation chart from 1850, and a set of topographic maps and satellite imagery dating from 1913 to 2006. Despite the large sediment load delivered annually to the gulf by the Irrawaddy and Salween Rivers, the coastline has been largely stable for 156 years, advancing at an average rate of no more than 0.34 km per century since 1925. The long-term average rate of increase in land area across the study area between 1925 and 2006 is 4.2 km2/year, but this masks a period of more rapid accumulation between 1925 and 1989 (8.7 km2/year), followed by a period of net erosion at a rate of 13 km2/year until 2006. Less than 9% of the sediment load delivered to the study region by the Irrawaddy, Salween and Sittoung Rivers has contributed to the observed progradation, with the remainder being exported into the Gulf of Martaban to depths below low tide level, or filling any accommodation space created due to subsidence or sea level rise. In contrast to many deltas worldwide, we suggest that the coastline encompassing the Irrawaddy delta and the Salween River is more or less in equilibrium, and that sediment deposition currently balances subsidence and sea level rise. Myanmar has fewer large dams relative to its Asian neighbours, and the Salween is currently undammed. This is forecast to change in the next 5,10 years with extensive damming projects on the mainstem of the Salween under consideration or construction, and the sediment retention will cause losses in sediment supply to the Gulf of Martaban, and retreat of the delta. This could impact the densely populated delta region and Yangon, and further exacerbate the impacts of extreme events such as Cyclone Nargis in 2008. [source]