Arginine Side Chain (arginine + side_chain)

Distribution by Scientific Domains


Selected Abstracts


Re-examining the role of Lys67 in class C ,-lactamase catalysis

PROTEIN SCIENCE, Issue 3 2009
Yu Chen
Abstract Lys67 is essential for the hydrolysis reaction mediated by class C ,-lactamases. Its exact catalytic role lies at the center of several different proposed reaction mechanisms, particularly for the deacylation step, and has been intensely debated. Whereas a conjugate base hypothesis postulates that a neutral Lys67 and Tyr150 act together to deprotonate the deacylating water, previous experiments on the K67R mutants of class C ,-lactamases suggested that the role of Lys67 in deacylation is mainly electrostatic, with only a 2- to 3-fold decrease in the rate of the mutant vs the wild type enzyme. Using the Class C ,-lactamase AmpC, we have reinvestigated the activity of this K67R mutant enzyme, using biochemical and structural studies. Both the rates of acylation and deacylation were affected in the AmpC K67R mutant, with a 61-fold decrease in kcat, the deacylation rate. We have determined the structure of the K67R mutant by X-ray crystallography both in apo and transition state-analog complexed forms, and observed only minimal conformational changes in the catalytic residues relative to the wild type. These results suggest that the arginine side chain is unable to play the same catalytic role as Lys67 in either the acylation or deacylation reactions catalyzed by AmpC. Therefore, the activity of this mutant can not be used to discredit the conjugate base hypothesis as previously concluded, although the reaction catalyzed by the K67R mutant itself likely proceeds by an alternative mechanism. Indeed, a manifold of mechanisms may contribute to hydrolysis in class C ,-lactamases, depending on the enzyme (wt or mutant) and the substrate, explaining why different mutants and substrates seem to support different pathways. For the WT enzyme itself, the conjugate base mechanism may be well favored. [source]


Revisiting glutaraldehyde cross-linking: the case of the Arg,Lys intermolecular doublet

ACTA CRYSTALLOGRAPHICA SECTION F (ELECTRONIC), Issue 3 2010
Michèle Salem
In addition to the common use of glutaraldehyde to nonspecifically cross-link protein crystals through lysine residues disposed on the surface of the protein, the use of gentle vapour diffusion of glutaraldehyde offers a convenient way to limit polymerization and to allow slow diffusion throughout the crystal. In the case of trimeric barnase crystals, a specific cross-link was observed between an lysine side chain and an arginine side chain that were spatially disposed at the ideal distance on the protein surface in the three monomers. Here, the direct observation of a specific Lys,Arg cross-link site is reported and a mechanism is proposed for the reaction. [source]


Structures of BIR domains from human NAIP and cIAP2

ACTA CRYSTALLOGRAPHICA SECTION F (ELECTRONIC), Issue 11 2009
Maria Dolores Herman
The inhibitor of apoptosis (IAP) family of proteins contains key modulators of apoptosis and inflammation that interact with caspases through baculovirus IAP-repeat (BIR) domains. Overexpression of IAP proteins frequently occurs in cancer cells, thus counteracting the activated apoptotic program. The IAP proteins have therefore emerged as promising targets for cancer therapy. In this work, X-ray crystallography was used to determine the first structures of BIR domains from human NAIP and cIAP2. Both structures harbour an N-terminal tetrapeptide in the conserved peptide-binding groove. The structures reveal that these two proteins bind the tetrapeptides in a similar mode as do other BIR domains. Detailed interactions are described for the P1,,P4, side chains of the peptide, providing a structural basis for peptide-specific recognition. An arginine side chain in the P3, position reveals favourable interactions with its hydrophobic moiety in the binding pocket, while hydrophobic residues in the P2, and P4, pockets make similar interactions to those seen in other BIR domain,peptide complexes. The structures also reveal how a serine in the P1, position is accommodated in the binding pockets of NAIP and cIAP2. In addition to shedding light on the specificity determinants of these two proteins, the structures should now also provide a framework for future structure-based work targeting these proteins. [source]


An improved strategy for the crystallization of Leishmania mexicana pyruvate kinase

ACTA CRYSTALLOGRAPHICA SECTION F (ELECTRONIC), Issue 3 2010
Hugh P. Morgan
The inclusion of novel small molecules in crystallization experiments has provided very encouraging results and this method is now emerging as a promising alternative strategy for crystallizing `problematic' biological macromolecules. These small molecules have the ability to promote lattice formation through stabilizing intermolecular interactions in protein crystals. Here, the use of 1,3,6,8-pyrenetetrasulfonic acid (PTS), which provides a helpful intermolecular bridge between Leishmania mexicana PYK (LmPYK) macromolecules in the crystal, is reported, resulting in the rapid formation of a more stable crystal lattice at neutral pH and greatly improved X-ray diffraction results. The refined structure of the LmPYK,PTS complex revealed the negatively charged PTS molecule to be stacked between positively charged (surface-exposed) arginine side chains from neighbouring LmPYK molecules in the crystal lattice. [source]