Metamorphic Grade (metamorphic + grade)

Distribution by Scientific Domains

Selected Abstracts

Large-scale folding in the Asemi-gawa region of the Sanbagawa Belt, southwest Japan

ISLAND ARC, Issue 2 2010
Hiroshi Mori
Abstract The Sanbagawa Belt generally shows higher metamorphic grade at higher structural levels. This inversion can be interpreted as reflecting an original inverted thermal structure typical of subduction zone environments. However, repetitions in the distribution of the metamorphic zones seen in central Shikoku, Japan, clearly show the original thermal structure has been affected by deformation after the peak of metamorphism. This repetition has been attributed to both the action of tectonic discontinuities and regional folding. It is important to distinguish between these two interpretations to determine the extent to which the original subduction zone sequence is preserved. Analyses of lithological and structural data reveal the presence of a large-scale post-metamorphic fold in the central part of the highest grade region. This folding has an axis that coincides with the thermal axis implied by the distribution of the metamorphic zonation, suggesting the repetition of metamorphic zones in this area can be accounted for by folding without the need for major discontinuities. [source]

Petrogenetic modelling of strongly residual metapelitic xenoliths within the southern Platreef, Bushveld Complex, South Africa

Abstract Xenoliths of quartz-absent Fe-rich aluminous metapelite are common within the platinum group element-rich mafic/ultramafic magmatic rocks of the Platreef. Relative to well-characterized protoliths, the xenoliths are strongly depleted in K2O and H2O, and have lost a substantial amount of melt (>50 vol.%). Mineral equilibria calculations in the NCKFMASHTO system yield results that are consistent with observations in natural samples. Lower-grade rocks that lack staurolite constrain peak pressures to ,2.5 kbar in the southern Platreef. Smaller xenoliths and the margins of larger xenoliths comprise micro-diatexite rich in coarse acicular corundum and spinel, which record evidence for the metastable persistence of lower-grade hydrous phases and rapid melting consequent on a temperature overstep of several hundred degrees following their incorporation in the mafic/ultramafic magmas. In the cores of larger xenoliths, temperatures increased more slowly enabling progressive metamorphism by continuous prograde equilibration and the loss of H2O by subsolidus dehydration; the H2O migrated to xenolith margins where it may have promoted increased melting. According to variations in the original compositional layering, layers became aluminosilicate- and/or cordierite-rich, commonly with spinel but only rarely with corundum. The differing mineralogical and microstructural evolution of the xenoliths depends on heating rates (governed by their size and, therefore, proximity to the Platreef magmas) and the pre-intrusive metamorphic grade of the protoliths. The presence or absence of certain phases, particularly corundum, is strongly influenced by the degree of metastable retention of lower-grade hydrates in otherwise identical protolith bulk compositions. The preservation of fine-scale compositional layering that is inferred to be relict bedding in xenolith cores implies that melt loss by compaction was extremely efficient. [source]

Fluid flow and Al transport during quartz-kyanite vein formation, Unst, Shetland Islands, Scotland

Abstract Quartz-kyanite veins, adjacent alteration selvages and surrounding ,precursor' wall rocks in the Dalradian Saxa Vord Pelite of Unst in the Shetland Islands (Scotland) were investigated to constrain the geochemical alteration and mobility of Al associated with channelized metamorphic fluid infiltration during the Caledonian Orogeny. Thirty-eight samples of veins, selvages and precursors were collected, examined using the petrographic microscope and electron microprobe, and geochemically analysed. With increasing grade, typical precursor mineral assemblages include, but are not limited to, chlorite+chloritoid, chlorite+chloritoid+kyanite, chlorite+chloritoid+staurolite and garnet+staurolite+kyanite+chloritoid. These assemblages coexist with quartz, white mica (muscovite, paragonite, margarite), and Fe-Ti oxides. The mineral assemblage of the selvages does not change noticeably with metamorphic grade, and consists of chloritoid, kyanite, chlorite, quartz, white mica and Fe-Ti oxides. Pseudosections for selvage and precursor bulk compositions indicate that the observed mineral assemblages were stable at regional metamorphic conditions of 550,600 C and 0.8,1.1 GPa. A mass balance analysis was performed to assess the nature and magnitude of geochemical alteration that produced the selvages adjacent to the veins. On average, selvages lost about ,26% mass relative to precursors. Mass losses of Na, K, Ca, Rb, Sr, Cs, Ba and volatiles were ,30 to ,60% and resulted from the destruction of white mica. Si was depleted from most selvages and transported locally to adjacent veins; average selvage Si losses were about ,50%. Y and rare earth elements were added due to the growth of monazite in cracks cutting apatite. The mass balance analysis also suggests some addition of Ti occurred, consistent with the presence of rutile and hematite-ilmenite solid solutions in veins. No major losses of Al from selvages were observed, but Al was added in some cases. Consequently, the Al needed to precipitate vein kyanite was not derived locally from the selvages. Veins more than an order of magnitude thicker than those typically observed in the field would be necessary to accommodate the Na and K lost from the selvages during alteration. Therefore, regional transport of Na and K out of the local rock system is inferred. In addition, to account for the observed abundances of kyanite in the veins, large fluid-rock ratios (102,103 m3fluid m,3rock) and time-integrated fluid fluxes in excess of ,104 m3fluid m,2rock are required owing to the small concentrations of Al in aqueous fluids. It is concluded that the quartz-kyanite veins and their selvages were produced by regional-scale advective mass transfer by means of focused fluid flow along a thrust fault zone. The results of this study provide field evidence for considerable Al mass transport at greenschist to amphibolite facies metamorphic conditions, possibly as a result of elevated concentrations of Al in metamorphic fluids due to alkali-Al silicate complexing at high pressures. [source]

Prograde metamorphic sequence of REE minerals in pelitic rocks of the Central Alps: implications for allanite,monazite,xenotime phase relations from 250 to 610 C

Abstract The distribution of REE minerals in metasedimentary rocks was investigated to gain insight into the stability of allanite, monazite and xenotime in metapelites. Samples were collected in the central Swiss Alps, along a well-established metamorphic field gradient that record conditions from very low grade metamorphism (250 C) to the lower amphibolite facies (,600 C). In the Alpine metapelites investigated, mass balance calculations show that LREE are mainly transferred between monazite and allanite during the course of prograde metamorphism. At very low grade metamorphism, detrital monazite grains (mostly Variscan in age) have two distinct populations in terms of LREE and MREE compositions. Newly formed monazite crystallized during low-grade metamorphism (<440 C); these are enriched in La, but depleted in Th and Y, compared with inherited grains. Upon the appearance of chloritoid (,440,450 C, thermometry based on chlorite,choritoid and carbonaceous material), monazite is consumed, and MREE and LREE are taken up preferentially in two distinct zones of allanite distinguishable by EMPA and X-ray mapping. Prior to garnet growth, allanite acquires two growth zones of clinozoisite: a first one rich in HREE + Y and a second one containing low REE contents. Following garnet growth, close to the chloritoid,out zone boundary (,556,580 C, based on phase equilibrium calculations), allanite and its rims are partially to totally replaced by monazite and xenotime, both associated with plagioclase ( biotite staurolite kyanite quartz). In these samples, epidote relics are located in the matrix or as inclusions in garnet, and these preserve their characteristic chemical and textural growth zoning, indicating that they did not experience re-equilibration following their prograde formation. Hence, the partial breakdown of allanite to monazite offers the attractive possibility to obtain in situ ages, representing two distinct crystallization stages. In addition, the complex REE + Y and Th zoning pattern of allanite and monazite are essential monitors of crystallization conditions at relatively low metamorphic grade. [source]

The initiation and development of metamorphic foliation in the Otago Schist, Part 1: competitive oriented growth of white mica

Abstract The 3D shape, size and orientation data for white mica grains sampled along two transects of increasing metamorphic grade in the Otago Schist, New Zealand, reveal that metamorphic foliation, as defined by mica shape-preferred orientation (SPO), developed rapidly at sub-greenschist facies conditions early in the deformation history. The onset of penetrative strain metamorphism is marked by the rapid elimination of poorly oriented large clastic mica in favour of numerous new smaller grains of contrasting composition, higher aspect ratios and a strong preferred orientation. The metamorphic mica is blade shaped with long axes defining the linear aspect of the foliation and intermediate axes a partial girdle about the lineation. Once initiated, foliation progressively intensified by an increase in the aspect ratio, size and alignment of grains, although highest grade samples within the chlorite zone record a decrease in aspect ratio and reduction in SPO strength despite continued increase in grain size. These trends are interpreted in terms of progressive competitive anisotropic growth of blade-shaped grains so that the fastest growth directions and blade lengths tend to parallel the extension direction during deformation. The competitive nature of mica growth is indicated by the progressive increase in size and resultant decrease in number of metamorphic mica with increasing grade, from c. 1000 relatively small mica grains per square millimetre of thin section at lower grades, to c. 100 relatively large grains per square millimetre in higher grade samples. Reversal of SPO intensity and grain aspect ratio trends in higher grade samples may reflect a reduction in the strain rate or reduction in the deviatoric component of the stress field. [source]

Oxide and sulphide isograds along a Late Archean, deep-crustal profile in Tamil Nadu, south India

Abstract Oxide,sulphide,Fe,Mg,silicate and titanite,ilmenite textures as well as their mineral compositions have been studied in felsic and intermediate orthogneisses across an amphibolite (north) to granulite facies (south) traverse of lower Archean crust, Tamil Nadu, south India. Titanite is limited to the amphibolite facies terrane where it rims ilmenite or occurs as independent grains. Pyrite is widespread throughout the traverse increasing in abundance with increasing metamorphic grade. Pyrrhotite is confined to the high-grade granulites. Ilmenite is widespread throughout the traverse increasing in abundance with increasing metamorphic grade and occurring primarily as hemo-ilmenite in the high-grade granulite facies rocks. Magnetite is widespread throughout the traverse and is commonly associated with ilmenite. It decreases in abundance with increasing metamorphic grade. In the granulite facies zone, reaction rims of magnetite + quartz occur along Fe,Mg silicate grain boundaries. Magnetite also commonly rims or is associated with pyrite. Both types of reaction rims represent an oxidation effect resulting from the partial subsolidus reduction of the hematite component in ilmenite to magnetite. This is confirmed by the presence of composite three oxide grains consisting of hematite, magnetite and ilmenite. Magnetite and magnetite,pyrite micro-veins along silicate grain boundaries formed over a wide range of post-peak metamorphic temperatures and pressures ranging from high-grade SO2 to low-grade H2S-dominated conditions. Oxygen fugacities estimated from the orthopyroxene,magnetite,quartz, orthopyroxene,hematite,quartz, and magnetite,hematite buffers average 2.5 log units above QFM. It is proposed that the trends in mineral assemblages, textures and composition are the result of an external, infiltrating concentrated brine containing an oxidizing component such as CaSO4 during high-grade metamorphism later acted upon by prograde and retrograde mineral reactions that do not involve an externally derived fluid phase. [source]

Geochemical constraints of the eclogite and granulite facies metamorphism as recognized in the Raobazhai complex from North Dabie Shan, China

Y. L. Xiao
Abstract A combined study of major and trace elements, fluid inclusions and oxygen isotopes has been carried out on garnet pyroxenite from the Raobazhai complex in the North Dabie Terrane (NDT). Well-preserved compositional zoning with Na decreasing and Ca and Mg increasing from the core to rim of pyroxene in the garnet pyroxenite indicates eclogite facies metamorphism at the peak metamorphic stage and subsequent granulite facies metamorphism during uplift. A P,T path with substantial heating (from c. 750 to 900 C) after the maximum pressure reveals a different uplift history compared with most other eclogites in the South Dabie Terrane (SDT). Fluid inclusion data can be correlated with the metamorphic grade: the fluid regime during the peak metamorphism (eclogite facies) was dominated by N2 -bearing NaCl-rich solutions, whereas it changed into CO2 -dominated fluids during the granulite facies retrograde metamorphism. At a late retrograde metamorphic stage, probably after amphibolite facies metamorphism, some external low-salinity fluids were involved. In situ UV-laser oxygen isotope analysis was undertaken on a 7 mm garnet, and impure pyroxene, amphibole and plagioclase. The nearly homogeneous oxygen isotopic composition (,18OVSMOW = c. 6.7,) in the garnet porphyroblast indicates closed fluid system conditions during garnet growth. However, isotopic fractionations between retrograde phases (amphibole and plagioclase) and garnet show an oxygen isotopic disequilibrium, indicating retrograde fluid,rock interactions. Unusual MORB-like rare earth element (REE) patterns for whole rock of the garnet pyroxenite contrast with most ultra-high-pressure (UHP) eclogites in the Dabie-Sulu area. However, the age-corrected initial ,Nd(t) is ,,2.9, which indicates that the protolith of the garnet pyroxenite was derived from an enriched mantle rather than from a MORB source. Combined with the present data of oxygen isotopic compositions and the characteristic N2 content in the fluid inclusions, we suggest that the protolith of the garnet pyroxenite from Raobazhai formed in an enriched mantle fragment, which has been exposed to the surface prior to the Triassic metamorphism. [source]

One-dimensional thermal modelling of Acadian metamorphism in southern Vermont, USA

T. R. Armstrong
One-dimensional thermal (1DT) modelling of an Acadian (Devonian) tectonothermal regime in southern Vermont, USA, used measured metamorphic pressures and temperatures and estimated metamorphic cooling ages based on published thermobarometric and geochronological studies to constrain thermal and tectonic input parameters. The area modelled lies within the Vermont Sequence of the Acadian orogen and includes: (i) a western domain containing garnet-grade pre-Silurian metasedimentary and metavolcanic rocks from the eastern flank of an Acadian composite dome structure (Rayponda,Sadawga Dome); and (ii) an eastern domain containing similar, but staurolite- or kyanite-grade, rocks from the western flank of a second dome structure (Athens Dome), approximately 10 km farther east. Using reasonable input parameters based on regional geological, petrological and geochronological constraints, the thermal modelling produced plausible P,T paths, and temperature,time (T ,t) and pressure,time (P,t) curves. Information extracted from P,T ,t modelling includes values of maximum temperature and pressure on the P,T paths, pressure at maximum temperature, predicted Ar closure ages for hornblende, muscovite and K-feldspar, and integrated exhumation and cooling rates for segments of the cooling history. The results from thermal modelling are consistent with independently obtained pressure, temperature and Ar cooling age data on regional metamorphism in southern Vermont. Modelling results provide some important bounding limits on the physical conditions during regional metamorphism, and indicate that the pressure contemporaneous with the attainment of peak temperature was probably as much as 2.5 kbar lower than the actual maximum pressure experienced by rocks along various particle paths. In addition, differences in peak metamorphic grade (garnet-grade versus staurolite-grade or kyanite-grade) and peak temperature for rocks initially loaded to similar crustal depths, differences in calculated exhumation rates, and differences in 40Ar/39Ar closure ages are likely to have been consequences of variations in the duration of isobaric heating (or ,crustal residence periods') and tectonic unroofing rates. Modelling results are consistent with a regional structural model that suggests west to east younging of specific Acadian deformational events, and therefore diachroneity of attainment of peak metamorphic conditions and subsequent 40Ar/39Ar closure during cooling. Modelling is consistent with the proposition that regional variations in timing and peak conditions of metamorphism are the result of the variable depths to which rocks were loaded by an eastward-thickening thrust-nappe pile rooted to the east (New Hampshire Sequence), as well as by diachronous structural processes within the lower plate rocks of the Vermont Sequence. [source]

Evolution of the Pan-African Wadi Haimur metamorphic sole, Eastern Desert, Egypt

H. Abd El-Naby
By comparison with the general features of metamorphic soles (e.g. vertical and lateral extension, metamorphic grade and diagnostic mineral parageneses, deformation and dominant rock types), it is inferred that the amphibolites, metagabbros and hornblendites of the Wadi Um Ghalaga,Wadi Haimur area in the southern part of the Eastern Desert of Egypt represent the metamorphic sole of the Wadi Haimur ophiolite belt. The overlying ultramafic rocks represent overthrusted mantle peridotite. Mineral compositions and thermobarometric studies indicate that the rocks of the metamorphic sole record metamorphic conditions typical of such an environment. The highest P,T conditions (c. 700 C and 6.5,8.5 kbar) are preserved in clinopyroxene amphibolites and garnet amphibolites from the top of the metamorphic sole, which is exposed in the southern part of the study area. The massive amphibolites and metagabbros further north (Wadi Haimur) represent the basal parts of the sole and show the lowest P,T conditions (450,620 C and 4.7,7.8 kbar). The sole is the product of dynamothermal metamorphism associated with the tectonic displacement of ultramafic rocks. Heat was derived mainly from the hot overlying mantle peridotites, and an inverted P,T gradient was caused by dynamic shearing during ophiolite emplacement. Sm/Nd dating of whole-rock,metamorphic mineral pairs yields similar ages of c. 630 Ma for clinopyroxene and hornblende, which is interpreted as a lower age limit for ophiolite formation and an upper age limit for metamorphism. A younger Sm/Nd age for a garnet-bearing rock (c. 590 Ma) is interpreted as reflecting a meaningful cooling age close to the metamorphic peak. Hornblende K/Ar ages in the range 570,550 Ma may reflect thermal events during late orogenic granite magmatism. [source]

Sub-ophiolite metamorphic rocks from NW Anatolia, Turkey

The metamorphic rocks from near Ktahya in north-west Anatolia record different stages in the history of closure of the Neo-Tethyan ,zmir,Ankara,Erzincan ocean. Sub-ophiolite metamorphic rocks within the Tav,anl, zone are a tectonically composite sequence of quartz,mica schists, amphibole schists, amphibolites and garnet amphibolites. They show increasing metamorphic grade towards the base of the ophiolite. A first metamorphic event, typical of sub-ophiolite metamorphic sole rocks, was characterized by high-grade assemblages, and followed by retrograde metamorphism. A second event was marked by a medium-to high-pressure overprint of the first-stage metamorphic assemblages with assemblages indicating a transition between the blueschist and greenschist facies. The chemistry of the sub-ophiolite metamorphic rocks indicates an ocean island basalt origin, and Ar,Ar dating indicates a high temperature metamorphic event at 932 Ma. Counter-clockwise P,T,t paths recorded by the sub-ophiolite metamorphic rocks are interpreted to result from intra-oceanic thrusting during the closure of the ,zmir, Ankara,Erzincan ocean, initiating subduction, which formed the high-temperature assemblages. Further subduction then produced the widespread blueschists of the Tav,anl, zone during the Late Cretaceous. Later cold thrusting obducted the ophiolite (with the metamorphic sole welded to its base), ophiolitic melanges and blueschists onto the Anatolide passive margin in the latest Cretaceous. All these events pre-date the final Anatolide,Pontide continent,continent collision. [source]

Analysis of ordinary chondrites using powder X-ray diffraction: 2.

Applications to ordinary chondrite parent-body processes
Several observations indicate that oxidation may have occurred during progressive metamorphism of equilibrated chondrites, including systematic changes with petrologic type in XRD-derived olivine and low-Ca pyroxene abundances, increasing ratios of MgO/(MgO+FeO) in olivine and pyroxene, mean Ni/Fe and Co/Fe ratios in bulk metal with increasing metamorphic grade, and linear Fe addition trends in molar Fe/Mn and Fe/Mg plots. An aqueous fluid, likely incorporated as hydrous silicates and distributed homogeneously throughout the parent body, was responsible for oxidation. Based on mass balance calculations, a minimum of 0.3,0.4 wt% H2O reacted with metal to produce oxidized Fe. Prior to oxidation the parent body underwent a period of reduction, as evidenced by the unequilibrated chondrites. Unlike olivine and pyroxene, average plagioclase abundances do not show any systematic changes with increasing petrologic type. Based on this observation and a comparison of modal and normative plagioclase abundances, we suggest that plagioclase completely crystallized from glass by type 4 temperature conditions in the H and L chondrites and by type 5 in the LL chondrites. Because the validity of using the plagioclase thermometer to determine peak temperatures rests on the assumption that plagioclase continued to crystallize through type 6 conditions, we suggest that temperatures calculated using pyroxene goethermometry provide more accurate estimates of the peak temperatures reached in ordinary chondrite parent bodies. [source]

Overview of the geology, petrology and tectonic framework of the high-pressure,ultrahigh-pressure metamorphic belt of the Kokchetav Massif, Kazakhstan

ISLAND ARC, Issue 3 2000
S. Maruyama
Abstract High- to ultrahigh-pressure metamorphic (HP,UHPM) rocks crop out over 150 km along an east,west axis in the Kokchetav Massif of northern Kazakhstan. They are disposed within the Massif as a 2 km thick, subhorizontal pile of sheet-like nappes, predominantly composed of interlayered pelitic and psammitic schists and gneisses, amphibolite and orthogneiss, with discontinuous boudins and lenses of eclogite, dolomitic marble, whiteschist and garnet pyroxenite. On the basis of predominating lithologies, we subdivided the nappe group into four north-dipping, fault-bounded orogen-parallel units (I,IV, from base to top). Constituent metabasic rocks exhibit a systematic progression of metamorphic grades, from high-pressure amphibolite through quartz,eclogite and coesite,eclogite to diamond,eclogite facies. Coesite, diamond and other mineral inclusions within zircon offer the best means by which to clarify the regional extent of UHPM, as they are effectively sequestered from the effects of fluids during retrogression. Inclusion distribution and conventional geothermobarometric determinations demonstrate that the highest grade metamorphic rocks (Unit II: T = 780,1000C, P = 37,60 kbar) are restricted to a medial position within the nappe group, and metamorphic grade decreases towards both the top (Unit III: T = 730,750C, P = 11,14 kbar; Unit IV: T = 530C, P = 7.5,9 kbar) and bottom (Unit I: T = 570,680C; P = 7,13.5 kbar). Metamorphic zonal boundaries and internal structural fabrics are subhorizontal, and the latter exhibit opposing senses of shear at the bottom (top-to-the-north) and top (top-to-the-south) of the pile. The orogen-scale architecture of the massif is sandwich-like, with the HP,UHPM nappe group juxtaposed across large-scale subhorizontal faults, against underlying low P,T metapelites (Daulet Suite) at the base, and overlying feebly metamorphosed clastic and carbonate rocks (Unit V). The available structural and petrologic data strongly suggest that the HP,UHPM rocks were extruded as a sequence of thin sheets, from a root zone in the south toward the foreland in the north, and juxtaposed into the adjacent lower-grade units at shallow crustal levels of around 10 km. The nappe pile suffered considerable differential internal displacements, as the 2 km thick sequence contains rocks exhumed from depths of up to 200 km in the core, and around 30,40 km at the margins. Consequently, wedge extrusion, perhaps triggered by slab-breakoff, is the most likely tectonic mechanism to exhume the Kokchetav HP,UHPM rocks. [source]

Synchronous peak Barrovian metamorphism driven by syn-orogenic magmatism and fluid flow in southern Connecticut, USA

Abstract Recent work in Barrovian metamorphic terranes has found that rocks experience peak metamorphic temperatures across several grades at similar times. This result is inconsistent with most geodynamic models of crustal over-thickening and conductive heating, wherein rocks which reach different metamorphic grades generally reach peak temperatures at different times. Instead, the presence of additional sources of heat and/or focusing mechanisms for heat transport, such as magmatic intrusions and/or advection by metamorphic fluids, may have contributed to the contemporaneous development of several different metamorphic zones. Here, we test the hypothesis of temporally focussed heating for the Wepawaug Schist, a Barrovian terrane in Connecticut, USA, using Sm,Nd ages of prograde garnet growth and U,Pb zircon crystallization ages of associated igneous rocks. Peak temperature in the biotite,garnet zone was dated (via Sm,Nd on garnet) at 378.9 1.6 Ma (2,), whereas peak temperature in the highest grade staurolite,kyanite zone was dated (via Sm,Nd on garnet rims) at 379.9 6.8 Ma (2,). These garnet ages suggest that peak metamorphism was pene-contemporaneous (within error) across these metamorphic grades. Ion microprobe U,Pb ages for zircon from igneous rocks hosted by the metapelites also indicate a period of syn-metamorphic peak igneous activity at 380.6 4.7 Ma (2,), indistinguishable from the peak ages recorded by garnet. A 388.6 2.1 Ma (2,) garnet core age from the staurolite,kyanite zone indicates an earlier episode of growth (coincident with ages from texturally early zircon and a previously published monazite age) along the prograde regional metamorphic T,t path. The timing of peak metamorphism and igneous activity, as well as the occurrence of extensive syn-metamorphic quartz vein systems and pegmatites, best supports the hypothesis that advective heating driven by magmas and fluids focussed major mineral growth into two distinct episodes: the first at c. 389 Ma, and the second, corresponding to the regionally synchronous peak metamorphism, at c. 380 Ma. [source]

Metamorphism and microstructures along a high-temperature metamorphic field gradient: the north,eastern boundary of the Krlovsk hvozd unit (Bohemian Massif, Czech Republic)

D. Scheuvens
Abstract A metamorphic field gradient has been investigated in the Moldanubian zone of the central European Variscides encompassing, from base to the top, a staurolite,kyanite zone, a muscovite,sillimanite zone, a K-feldspar,sillimanite zone, and a K-feldspar,cordierite zone, respectively. The observed reaction textures in the anatectic metapsammopelites of the higher grade zones are fully compatible with experimental data and petrogenetic grids that are based on fluid-absent melting reactions. From structural and microstructural observations it can be concluded that the boundary between the kyanite,staurolite zone and the muscovite- and K-feldspar,sillimanite zones coincides with an important switch in deformation mechanism(s). Besides minor syn-anatectic shearing (melt-enhanced deformation), microstructural criteria point (a) to a switch in deformation mechanism from rotation recrystallization (climb-accommodated dislocation creep) to prism slip and high-temperature (fast) grain boundary migration in quartz (b) to the activity of diffusion creep in quartz,feldspar layers, and (c) to accommodation of strain by intense shearing in fibrolite,biotite layers. It is suggested that any combination of these deformation mechanisms will profoundly affect the rheological characteristics of high-grade metamorphic rocks and significantly lower rock strength. Hence, the boundary between these zones marks a major rheological barrier in the investigated cross section and probably also in other low- to medium-pressure/high-temperature areas. At still higher metamorphic grades (K-feldspar-cordierite zone), where the rheologically critical melt percentage is reached, rock rheology is mainly governed by the melt and other deformation mechanisms are of minor importance. In the study area, the switch in deformation mechanism(s) is responsible for large-scale strain partitioning and concentration of deformation within the higher-temperature hanging wall during top-to-the-S thrusting, thus preserving a more complete petrostructural record within the rocks of the footwall including indications for a ?Devonian high- to medium-pressure/medium-temperature metamorphic event. Thrusting is accompanied by diapiric ascent of diatexites of the K-feldspar-cordierite zone and infolding of the footwall, suggesting local crustal overturn in this part of the Moldanubian zone. [source]