Membrane Organization (membrane + organization)

Distribution by Scientific Domains


Selected Abstracts


Dynamic organization of lymphocyte plasma membrane: lessons from advanced imaging methods

IMMUNOLOGY, Issue 1 2010
Dylan M. Owen
Summary Lipids and lipid domains are suggested to play an essential role in the heterogeneous organization of the plasma membrane in eukaryotic cells, including cells of the immune system. We summarize the results of advanced imaging and physical studies of membrane organization with special focus on the plasma membrane of lymphocytes. We provide a comprehensive up-to-date view on the existence of membrane lipid and protein clusters such as lipid rafts and suggest research directions to better understand these highly dynamic entities on the surface of immune cells. [source]


Expression of multiple AQP4 pools in the plasma membrane and their association with the dystrophin complex

JOURNAL OF NEUROCHEMISTRY, Issue 6 2008
Grazia Paola Nicchia
Abstract Altered aquaporin-4 (AQP4) expression has been reported in brain edema, tumors, muscular dystrophy, and neuromyelitis optica. However, the plasma membrane organization of AQP4 and its interaction with proteins such as the dystrophin-associated protein complex are not well understood. In this study, we used sucrose density gradient ultracentrifugation and 2D blue native/sodium dodecyl sulfate,polyacrylamide gel electrophoresis and showed the expression of several AQP4 multi-subunit complexes (pools) of different sizes, ranging from , 1 MDa to ,500 kDa and containing different ratios of the 30/32 kDa AQP4 isoforms, indicative of orthogonal arrays of particles of various sizes. A high molecular weight pool co-purified with dystrophin and ,-dystroglycan and was drastically reduced in the skeletal muscle of mdx3cv mice, which have no dystrophin. The number and size of the AQP4 pools were the same in the kidney where dystrophin is not expressed, suggesting the presence of dystrophin-like proteins for their expression. We found that AQP2 is expressed only in one major pool of ,500 kDa, indicating that the presence of different pools is a peculiarity of AQP4 rather than a widespread feature in the AQP family. Finally, in skeletal muscle caveolin-3 did not co-purify with any AQP4 pool, indicating the absence of interaction of the two proteins and confirming that caveolae and orthogonal arrays of particles are two independent plasma membrane microdomains. These results contribute to a better understanding of AQP4 membrane organization and raise the possibility that abnormal expression of specific AQP4 pools may be found in pathological states. [source]


Kin1 is a plasma membrane-associated kinase that regulates the cell surface in fission yeast

MOLECULAR MICROBIOLOGY, Issue 5 2010
Angela Cadou
Summary Cell morphogenesis is a complex process that depends on cytoskeleton and membrane organization, intracellular signalling and vesicular trafficking. The rod shape of the fission yeast Schizosaccharomyces pombe and the availability of powerful genetic tools make this species an excellent model to study cell morphology. Here we have investigated the function of the conserved Kin1 kinase. Kin1-GFP associates dynamically with the plasma membrane at sites of active cell surface remodelling and is present in the membrane fraction. Kin1, null cells show severe defects in cell wall structure and are unable to maintain a rod shape. To explore Kin1 primary function, we constructed an ATP analogue-sensitive allele kin1-as1. Kin1 inhibition primarily promotes delocalization of plasma membrane-associated markers of actively growing cell surface regions. Kin1 itself is depolarized and its mobility is strongly reduced. Subsequently, amorphous cell wall material accumulates at the cell surface, a phenotype that is dependent on vesicular trafficking, and the cell wall integrity mitogen-activated protein kinase pathway is activated. Deletion of cell wall integrity mitogen-activated protein kinase components reduces kin1, hypersensitivity to stresses such as those induced by Calcofluor white and SDS. We propose that Kin1 is required for a tight link between the plasma membrane and the cell wall. [source]


Anchorage to the cytosolic face of the endoplasmic reticulum membrane: a new strategy to stabilize a cytosolic recombinant antigen in plants

PLANT BIOTECHNOLOGY JOURNAL, Issue 6 2008
Alessandra Barbante
Summary The levels of accumulation of recombinant vaccines in transgenic plants are protein specific and strongly influenced by the subcellular compartment of destination. The human immunodeficiency virus protein Nef (negative factor), a promising target for the development of an antiviral vaccine, is a cytosolic protein that accumulates to low levels in transgenic tobacco and is even more unstable when introduced into the secretory pathway, probably because of folding defects in the non-cytosolic environment. To improve Nef accumulation, a new strategy was developed to anchor the molecule to the cytosolic face of the endoplasmic reticulum (ER) membrane. For this purpose, the Nef sequence was fused to the C-terminal domain of mammalian ER cytochrome b5, a long-lived, tail-anchored (TA) protein. This consistently increased Nef accumulation by more than threefold in many independent transgenic tobacco plants. Real-time polymerase chain reaction of mRNA levels and protein pulse-chase analysis indicated that the increase was not caused by higher transcript levels but by enhanced protein stability. Subcellular fractionation and immunocytochemistry indicated that Nef-TA accumulated on the ER membrane. Over-expression of mammalian or plant ER cytochrome b5 caused the formation of stacked membrane structures, as observed previously in similar experiments performed in mammalian cells; however, Nef-TA did not alter membrane organization in tobacco cells. Finally, Nef could be removed in vitro by its tail-anchor, taking advantage of an engineered thrombin cleavage site. These results open up the way to use tail-anchors to improve foreign protein stability in the plant cytosol without perturbing cellular functions. [source]


On the structural diversity of Shiga toxin glycosphingolipid receptors in lymphoid and myeloid cells determined by nanoelectrospray ionization tandem mass spectrometry

RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 15 2010
Petra Hoffmann
Shiga toxin (Stx, synonymous to verotoxin, VT) binds with high and low affinity to the globo-series neutral glycosphingolipids (GSLs), globotriaosylceramide (Gb3Cer or Gal,4Gal,4Glc,1Cer, also known as CD77) and globotetraosylceramide (Gb4Cer or GalNAc,3Gal,4Gal,4Glc,1Cer), respectively, which represent the targets of Stxs on many different cell types. B-cell-derived Raji cells and THP-1 cells of monocytic origin are widely used for the investigation of Stx-mediated cellular response, because Stx is known to cause cell death in both cell lines. Despite their functional importance, the Stx receptors of Raji and THP-1 cells have so far not been investigated. This prompted us to explore the structures of their GSL receptors in detail by means of nanoelectrospray ionization quadrupole time-of-flight mass spectrometry (nanoESI-QTOF-MS) with collision-induced dissociation (CID) in conjunction with Stx1 as well as anti-Gb3Cer and anti-Gb4Cer antibodies. Using the combination of a thin-layer chromatography (TLC) overlay assay and MS1 and MS2 analysis we identified Gb3Cer (d18:1, C24:1/C24:0) as the prevalent Stx1-receptor accompanied by less abundant Gb3Cer (d18:1, C16:0) in the neutral GSL fraction of Raji cells. The same Gb3Cer species but with almost equal proportions of the C24:1/C24:0 and C16:0 variants were found in THP-1 cells. In addition, unusual hydroxylated Gb3Cer (d18:1, C24:1/C24:0) and Gb3Cer (d18:1, C26:1) could be identified in trace quantities in both cell lines. As the most obvious difference between Raji and THP-1 cells we observed the expression of Gb4Cer in THP-1 cells, whereas Raji cells failed to express this elongation product of Gb3Cer. Both short- and long-chain fatty acid carrying Gb4Cer (d18:1, C16:0) and Gb4Cer (d18:1, C24:1/C24:0), respectively, were the prevalent Gb4Cer variants. This first report on the differential expression of Gb3Cer and Gb4Cer and their structural diversity in lymphoid and myeloid cell lines supports the hypothesis that such heterogeneities might play a functional role in the molecular assembly of GSLs in membrane organization and cellular signaling of Stx-susceptible cells. Copyright © 2010 John Wiley & Sons, Ltd. [source]