anti-IL-10 Antibody (anti-il-10 + antibody)

Distribution by Scientific Domains


Selected Abstracts


CD4+CD25+ regulatory T cells suppress contact hypersensitivity reactions by blocking influx of effector T cells into inflamed tissue

EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 11 2006
Sabine Ring Dr.
Abstract CD4+CD25+ regulatory T cells (Treg) exert suppressive functions on effector T cells in vitro and in vivo. However, the exact cellular events that mediate this inhibitory action remain largely unclear. To elucidate these events, we used intravital microscopy in a model of contact hypersensitivity (CHS) and visualized the leukocyte-endothelium interaction at the site of antigen challenge in awake C57BL/6 mice. Injection of Treg i.v. into sensitized mice at the time of local hapten challenge significantly inhibited rolling and adhesion of endogenous leukocytes to the endothelium. A similar inhibition of leukocyte recruitment could be recorded after injection of Treg-derived tissue culture supernatant. Thus, these data indicate that soluble factors may account for the suppressive effects. Accordingly we found that IL-10, but not TGF-,, was produced by Treg upon stimulation and that addition of anti-IL-10 antibodies abrogated the suppressive effects of Treg and tissue culture supernatant in CHS reactions. Moreover, CD4+CD25+ T cells isolated from IL-10,/, mice were not able to suppress the immune response induced by hapten treatment in C57BL/6 mice. In conclusion, our data suggest that cytokine-dependent rather than cell-cell contact-dependent mechanisms play a pivotal role in the suppression of CHS reactions by Treg in vivo. [source]


Nramp1 -functionality increases iNOS expression via repression of IL-10 formation

EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 11 2008
Gernot Fritsche
Abstract In mice, resistance to certain intracellular microbes depends on the expression of a late phagosomal protein termed natural-resistance associated macrophage protein 1 (Nramp1, Slc11a1). Nramp1- functionality is associated with alterations of cellular iron homeostasis and a sustained pro-inflammatory immune response, including the formation of the antimicrobial effector molecule NO. To investigate the underlying mechanism we used RAW-264.7 murine macrophage cells stably transfected with a functional Nramp1 allele (RAW-37) or Nramp1 non-functional controls (RAW-21). We found that the production of and signalling by the anti-inflammatory cytokine IL-10 was significantly enhanced in macrophages lacking functional Nramp1. Upon infection of macrophages with Salmonella typhimurium pathogen survival was significantly better in RAW-21 than in RAW-37, which inversely correlated to NO and TNF-, formation. Addition of a neutralising anti-IL-10 antibody to RAW-21 cells led to a significantly reduced survival of S. typhimurium within these cells and enhanced formation of NO and TNF-, reaching levels comparable to that observed in cells bearing functional Nramp1. Oppositely, supplementation of iron to RAW-21 cells further increased IL-10 formation. Thus, Nramp1 mediates effective host defence in part via suppression of excessive IL-10 production which may relate to Nramp1- mediated reduction of cellular iron pools, thus strengthening antimicrobial effector mechanisms. [source]


CD4+ CD25+ transforming growth factor-,-producing T cells are present in the lung in murine tuberculosis and may regulate the host inflammatory response,

CLINICAL & EXPERIMENTAL IMMUNOLOGY, Issue 3 2007
C. M. Mason
Summary CD4+ CD25+ regulatory T cells produce the anti-inflammatory cytokines transforming growth factor (TGF)-, or interleukin (IL)-10. Regulatory T cells have been recognized to suppress autoimmunity and promote self-tolerance. These cells may also facilitate pathogen persistence by down-regulating the host defence response during infection with Mycobacterium tuberculosis. We evaluated TGF-,+ and IL-10+ lung CD4+ CD25+ T cells in a murine model of M. tuberculosis. BALB/c mice were infected with ,50 colony-forming units of M. tuberculosis H37Rv intratracheally. At serial times post-infection, lung cells were analysed for surface marker expression (CD3, CD4, CD25) and intracellular IL-10, TGF-,, and interferon (IFN)-, production (following stimulation in vitro with anti-CD3 and anti-CD28 antibodies). CD4+ lung lymphocytes were also selected positively after lung digestion, and stimulated in vitro for 48 h with anti-CD3 and anti-CD28 antibodies in the absence and presence of anti-TGF-, antibody, anti-IL-10 antibody or rmTGF-, soluble receptor II/human Fc chimera (TGF,srII). Supernatants were assayed for elicited IFN-, and IL-2. Fluorescence activated cell sorter analyses showed that TGF-,- and IL-10-producing CD4+ CD25+ T cells are present in the lungs of infected mice. Neutralization of TGF-, and IL-10 each resulted in increases in elicited IFN-,, with the greatest effect seen when TGF,srII was used. Elicited IL-2 was not affected significantly by TGF-, neutralization. These results confirm the presence of CD4+ CD25+ TGF-,+ T cells in murine pulmonary tuberculosis, and support the possibility that TGF-, may contribute to down-regulation of the host response. [source]


Interferon-,2a is sufficient for promoting dendritic cell immunogenicity

CLINICAL & EXPERIMENTAL IMMUNOLOGY, Issue 3 2005
A. Tamir
Summary Type I interferons (IFNs) are widely used therapeutically. IFN-,2a in particular is used as an antiviral agent, but its immunomodulatory properties are poorly understood. Dendritic cells (DCs) are the only antigen-presenting cells able to prime naive T cells and therefore play a crucial role in initiating the adaptive phase of the immune response. We studied the effects of IFN-,2a on DC maturation and its role in determining Th1/Th2 equilibrium. We found that IFN-,2a induced phenotypic maturation of DCs and increased their allostimulatory capacity. When dendritic cells were stimulated simultaneously by CD40 ligation and IFN-,2a, the production of interleukin (IL)-10 and IL-12 was increased. In contrast, lipopolysaccharide (LPS) stimulation in the presence of IFN-,2a mainly induced IL-10 release. The production of IFN-, and IL-5 by the responder naive T cells was also amplified in response to IFN-,2a-treated DCs. Furthermore, IL-12 production by IFN-,2a-treated DCs was enhanced further in the presence of anti-IL-10 antibody. Different results were obtained when DCs were treated simultaneously with IFN-,2a and other maturation factors, in particular LPS, and then stimulated by CD40 ligation 36 h later. Under these circumstances, IFN-,2a did not modify the DC phenotype, and the production of IL-10/IL-12 and IFN-,/IL-5 by DCs and by DC-stimulated naive T cells, respectively, was inhibited compared to the effects on DCs treated with maturation factors alone. Altogether, this work suggests that IFN-,2a in isolation is sufficient to promote DC activation, however, other concomitant events, such as exposure to LPS during a bacterial infection, can inhibit its effects. These results clarify some of the in vivo findings obtained with IFN-,2a and have direct implications for the design of IFN-,-based vaccines for immunotherapy. [source]