Large-scale Computations (large-scale + computation)

Distribution by Scientific Domains


Selected Abstracts


A Grid-enabled problem-solving environment for advanced reservoir uncertainty analysis

CONCURRENCY AND COMPUTATION: PRACTICE & EXPERIENCE, Issue 18 2008
Zhou Lei
Abstract Uncertainty analysis is critical for conducting reservoir performance prediction. However, it is challenging because it relies on (1) massive modeling-related, geographically distributed, terabyte, or even petabyte scale data sets (geoscience and engineering data), (2) needs to rapidly perform hundreds or thousands of flow simulations, being identical runs with different models calculating the impacts of various uncertainty factors, (3) an integrated, secure, and easy-to-use problem-solving toolkit to assist uncertainty analysis. We leverage Grid computing technologies to address these challenges. We design and implement an integrated problem-solving environment ResGrid to effectively improve reservoir uncertainty analysis. The ResGrid consists of data management, execution management, and a Grid portal. Data Grid tools, such as metadata, replica, and transfer services, are used to meet massive size and geographically distributed characteristics of data sets. Workflow, task farming, and resource allocation are used to support large-scale computation. A Grid portal integrates the data management and the computation solution into a unified easy-to-use interface, enabling reservoir engineers to specify uncertainty factors of interest and perform large-scale reservoir studies through a web browser. The ResGrid has been used in petroleum engineering. Copyright © 2008 John Wiley & Sons, Ltd. [source]


A parallel Galerkin boundary element method for surface radiation and mixed heat transfer calculations in complex 3-D geometries

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 12 2004
X. Cui
Abstract This paper presents a parallel Galerkin boundary element method for the solution of surface radiation exchange problems and its coupling with the finite element method for mixed mode heat transfer computations in general 3-D geometries. The computational algorithm for surface radiation calculations is enhanced with the implementation of ideas used for 3-D computer graphics applications and with data structure management involving creating and updating various element lists optimized for numerical performance. The algorithm for detecting the internal third party blockages of thermal rays is presented, which involves a four-step procedure, i.e. the primary clip, secondary clip and adaptive integration with checking. Case studies of surface radiation and mixed heat transfer in both simple and complex 3-D geometric configurations are presented. It is found that a majority of computational time is spent on the detection of foreign element blockages and parallel computing is ideally suited for surface radiation calculations. Results show that the decrease of the CPU time approaches asymptotically to an inverse rule for parallel computing of surface radiation exchanges. For large-scale computations involving complex 3-D geometries, an iterative procedure is a preferred approach for the coupling of the Galerkin boundary and finite elements for mixed mode heat transfer calculations. Copyright © 2004 John Wiley & Sons, Ltd. [source]


An adaptive control system using the fuzzy theory for transient multi-physics numerical simulations,

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 6-8 2007
Toshiharu Muramatsu
Abstract An adaptive control system to yield optimum time step sizes was developed using the fuzzy theory for transient multi-physics numerical simulations. Applications of the control system reveal considerable amount of the computing time savings, typically by 50,75% of the computing time required when the time step size was not controlled by the system. The result obtained in this work is very encouraging in the sense that the adaptive control system would be used as one of the efficient measures for saving computing time when one wishes to perform extremely large-scale computations in transient multi-physics numerical simulations. Copyright © 2007 John Wiley & Sons, Ltd. [source]


A Framework of Massively Parallel Analysis of Regional Earthquake Activities

ACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 4 2009
Huai ZHANG
Abstract: Recent rapid progress in cyberinfrastructure in geosciences is providing seismologists an enormous boost for addressing multi-physical phenomena of regional seismic activities. The inherent nature of their multi-scale properties, from temporal to spatial spaces, makes it inevitably to be solved using large-scale computations and distributed parallel data processing schemes. Under such circumstance, using the advanced numerical algorithms and unstructured mesh generation technologies become the obstacles for modern seismologists. The main objective of this paper is to present a framework, which includes a parallel finite element simulation and distributed data infrastructure, to address the novel algorithms, state-of-the-art modeling and their implementation in regional seismicgenic systems. We also discuss and implement this framework to analyze the strong earthquake evolution processes in the Sichuan-Yunnan region. This study is the key to long-term seismic risk by estimates, providing a platform for predictive large-scale numerical simulation modeling of regional earthquake activities. [source]