Isotropic Resolution (isotropic + resolution)

Distribution by Scientific Domains


Selected Abstracts


Isotropic resolution diffusion tensor imaging with whole brain acquisition in a clinically acceptable time

HUMAN BRAIN MAPPING, Issue 4 2002
Derek Kenton Jones
Abstract Our objective was to develop a diffusion tensor MR imaging pulse sequence that allows whole brain coverage with isotropic resolution within a clinically acceptable time. A single-shot, cardiac-gated MR pulse sequence, optimized for measuring the diffusion tensor in human brain, was developed to provide whole-brain coverage with isotropic (2.5 × 2.5 × 2.5 mm) spatial resolution, within a total imaging time of approximately 15 min. The diffusion tensor was computed for each voxel in the whole volume and the data processed for visualization in three orthogonal planes. Anisotropy data were further visualized using a maximum-intensity projection algorithm. Finally, reconstruction of fiber-tract trajectories i.e., ,tractography' was performed. Images obtained with this pulse sequence provide clear delineation of individual white matter tracts, from the most superior cortical regions down to the cerebellum and brain stem. Because the data are acquired with isotropic resolution, they can be reformatted in any plane and the sequence can therefore be used, in general, for macroscopic neurological or psychiatric neuroimaging investigations. The 3D visualization afforded by maximum intensity projection imaging and tractography provided easy visualization of individual white matter fasciculi, which may be important sites of neuropathological degeneration or abnormal brain development. This study has shown that it is possible to obtain robust, high quality diffusion tensor MR data at 1.5 Tesla with isotropic resolution (2.5 × 2.5 × 2.5 mm) from the whole brain within a sufficiently short imaging time that it may be incorporated into clinical imaging protocols. Hum. Brain Mapping 15:216,230, 2002. © 2002 Wiley-Liss, Inc. [source]


Site-Specific Deterioration of Trabecular Bone Architecture in Men and Women With Advancing Age

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 12 2008
Eva-Maria Lochmüller
Abstract We tested the hypothesis that the age dependence of trabecular bone microstructure differs between men and women and is specific to skeletal site. Furthermore, we aimed to investigate the microstructural pattern of bone loss in aging. Microstructural properties of trabecular bone were measured in vitro in 75 men and 75 age-matched women (age, 52,99 yr) using ,CT. Trabecular bone samples were scanned at a 26-,m isotropic resolution at seven anatomical sites (i.e., distal radius, T10 and L2 vertebrae, iliac crest, femoral neck and trochanter, and calcaneus). DXA measurements were obtained at the distal radius and proximal femur and QCT was used at T12. No significant decrease in bone density or structure with age was found in men using ,CT, DXA, or QCT at any of the anatomical sites. In women, a significant age-dependent decrease in BV/TV was observed at most sites, which was strongest at the iliac crest and weakest at the distal radius. At most sites, the reduction in BV/TV was associated with an increase in structure model index, decrease in Tb.N, and an increase in Tb.Sp. Only in the calcaneus was it associated with a significant decrease in Tb.Th. In conclusion, a significant, site-specific correlation of trabecular bone microstructure with age was found in women but not in men of advanced age. The microstructural basis by which a loss of BV/TV occurs with age can vary between anatomical sites. [source]


3D diffusion tensor MRI with isotropic resolution using a steady-state radial acquisition

JOURNAL OF MAGNETIC RESONANCE IMAGING, Issue 5 2009
Youngkyoo Jung PhD
Abstract Purpose To obtain diffusion tensor images (DTI) over a large image volume rapidly with 3D isotropic spatial resolution, minimal spatial distortions, and reduced motion artifacts, a diffusion-weighted steady-state 3D projection (SS 3DPR) pulse sequence was developed. Materials and Methods A diffusion gradient was inserted in a SS 3DPR pulse sequence. The acquisition was synchronized to the cardiac cycle, linear phase errors were corrected along the readout direction, and each projection was weighted by measures of consistency with other data. A new iterative parallel imaging reconstruction method was also implemented for removing off-resonance and undersampling artifacts simultaneously. Results The contrast and appearance of both the fractional anisotropy and eigenvector color maps were substantially improved after all correction techniques were applied. True 3D DTI datasets were obtained in vivo over the whole brain (240 mm field of view in all directions) with 1.87 mm isotropic spatial resolution, six diffusion encoding directions in under 19 minutes. Conclusion A true 3D DTI pulse sequence with high isotropic spatial resolution was developed for whole brain imaging in under 20 minutes. To minimize the effects of brain motion, a cardiac synchronized, multiecho, DW-SSFP pulse sequence was implemented. Motion artifacts were further reduced by a combination of linear phase correction, corrupt projection detection and rejection, sampling density reweighting, and parallel imaging reconstruction. The combination of these methods greatly improved the quality of 3D DTI in the brain. J. Magn. Reson. Imaging 2009;29:1175,1184. © 2009 Wiley-Liss, Inc. [source]


Manganese-enhanced MRI of the mouse auditory pathway

MAGNETIC RESONANCE IN MEDICINE, Issue 1 2008
Takashi Watanabe
Abstract Functional mapping of the lateral lemniscus and the superior olivary complex as part of the auditory pathway was accomplished for the first time in mice in vivo using manganese-enhanced MRI (2.35T, 3D FLASH, 117 ,m isotropic resolution). These and other auditory centers in the brainstem presented with pronounced signal enhancements after systemic administration of manganese chloride when animals were exposed to acoustic stimuli for 48 hr, but not when kept in a quiet environment. The results indicate an activation-dependent accumulation of manganese in the neural circuit composed of the cochlear nucleus, the superior olivary complex, the lateral lemniscus, and the inferior colliculus. The marked enhancement of the lateral lemniscus suggests that the stimulus-related accumulation of manganese reflects not only a regional uptake from extracellular fluid but also a concurrent delivery by axonal transport within the auditory system. Magn Reson Med 60:210,212, 2008. © 2008 Wiley-Liss, Inc. [source]


Time-resolved contrast-enhanced imaging with isotropic resolution and broad coverage using an undersampled 3D projection trajectory

MAGNETIC RESONANCE IN MEDICINE, Issue 2 2002
Andrew V. Barger
Abstract Time-resolved contrast-enhanced 3D MR angiography (MRA) methods have gained in popularity but are still limited by the tradeoff between spatial and temporal resolution. A method is presented that greatly reduces this tradeoff by employing undersampled 3D projection reconstruction trajectories. The variable density k -space sampling intrinsic to this sequence is combined with temporal k -space interpolation to provide time frames as short as 4 s. This time resolution reduces the need for exact contrast timing while also providing dynamic information. Spatial resolution is determined primarily by the projection readout resolution and is thus isotropic across the FOV, which is also isotropic. Although undersampling the outer regions of k -space introduces aliased energy into the image, which may compromise resolution, this is not a limiting factor in high-contrast applications such as MRA. Results from phantom and volunteer studies are presented demonstrating isotropic resolution, broad coverage with an isotropic field of view (FOV), minimal projection reconstruction artifacts, and temporal information. In one application, a single breath-hold exam covering the entire pulmonary vasculature generates high-resolution, isotropic imaging volumes depicting the bolus passage. Magn Reson Med 48:297,305, 2002. © 2002 Wiley-Liss, Inc. [source]


Magnetic resonance histology of the adult zebrafish brain: optimization of fixation and gadolinium contrast enhancement

NMR IN BIOMEDICINE, Issue 4 2010
Jeremy F. P. Ullmann
Abstract Magnetic resonance histology (MRH) has become a widespread tool to examine brain morphology in situ or ex vivo. Samples are routinely fixed and stained to allow for longer scan times with increased contrast and resolution. Although the zebrafish is an important model for neuroscience, to date most MRH studies have focused almost exclusively on mice. In this paper, we examined, for the first time, the zebrafish brain using MRH. We compared a range of fixatives, contrast agents, and fixation/staining durations to determine optimal imaging of the zebrafish brain. By quantifying the T1, T2, and T2* relaxation values, we demonstrated that ethanol and potassium permanganate are unviable for imaging and significant differences exist between mono and di-aldehydes. Furthermore, we compared two commercially available gadolinium-based contrast agents, Magnevist® and Optimark®, at five different concentrations. For both contrast agents, a concentration of 0.5% was determined to be ideal as it significantly shortened the T1 but maintained a relatively long T2 and T2*. Subsequently, we analyzed the duration of fixation/staining and established a period of 12,h, which best minimized T1 values but maintained T2 and T2* values. Finally, using this optimized fixation and staining protocol, we performed a gradient-echo T2*-weighted imaging to obtain an image set of the adult zebrafish brain at an isotropic resolution of 10,µm. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Fibonacci grids: A novel approach to global modelling

THE QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, Issue 619 2006
Richard Swinbank
Abstract Recent years have seen a resurgence of interest in a variety of non-standard computational grids for global numerical prediction. The motivation has been to reduce problems associated with the converging meridians and the polar singularities of conventional regular latitude,longitude grids. A further impetus has come from the adoption of massively parallel computers, for which it is necessary to distribute work equitably across the processors; this is more practicable for some non-standard grids. Desirable attributes of a grid for high-order spatial finite differencing are: (i) geometrical regularity; (ii) a homogeneous and approximately isotropic spatial resolution; (iii) a low proportion of the grid points where the numerical procedures require special customization (such as near coordinate singularities or grid edges); (iv) ease of parallelization. One family of grid arrangements which, to our knowledge, has never before been applied to numerical weather prediction, but which appears to offer several technical advantages, are what we shall refer to as ,Fibonacci grids'. These grids possess virtually uniform and isotropic resolution, with an equal area for each grid point. There are only two compact singular regions on a sphere that require customized numerics. We demonstrate the practicality of this type of grid in shallow-water simulations, and discuss the prospects for efficiently using these frameworks in three-dimensional weather prediction or climate models. © Crown copyright, 2006. Royal Meteorological Society [source]