Inorganic Fillers (inorganic + filler)

Distribution by Scientific Domains


Selected Abstracts


Electrical and thermal properties of nylon 6/calcium carbonate composites

ADVANCES IN POLYMER TECHNOLOGY, Issue 4 2009
M. A. Moussa
Abstract Several polymer composites formed from nylon 6/CaCO3 with different ratios and particle sizes were prepared using modified and unmodified CaCO3 as inorganic filler. The modification of CaCO3 surfaces was carried out by adsorption of oleic acid from toluene. TGA and DSC measurements show that the glass transition temperatures reduced by the presence of inorganic filler, whereas the melting temperature did not influenced. In all prepared polymer composites, the presence of filler accelerates the degradation process of the polymer. Dielectric properties of the investigated samples were studied in the frequency range from 45 Hz to 1 MHz and at temperatures ranging between 50 and 200°C. The presence of CaCO3 led to a remarkable decrease in the conductivity of nylon 6. © 2010 Wiley Periodicals, Inc. Adv Polym Techn 28:257,266, 2009; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/adv.20165 [source]


In vivo aging test for a bioactive bone cement consisting of glass bead filler and PMMA matrix,

JOURNAL OF BIOMEDICAL MATERIALS RESEARCH, Issue 2 2004
Shuichi Shinzato
Abstract The degradation of a new bioactive bone cement (GBC), comprised of an inorganic filler (bioactive MgO-CaO-SiO2 -P2O5 -CaF2 glass beads) and an organic matrix [high-molecular-weight polymethyl methacrylate (PMMA)], was evaluated in an in vivo aging test. Hardened rectangular specimens (20 × 4 × 3 mm) were prepared from two GBC formulations (containing 50% w/w [GBC50] or 60% w/w [GBC60] bioactive beads) and a conventional PMMA bone cement control (CMW-1). Initial bending strengths were measured with the use of the three-point bending method. Specimens of all three cements were then implanted into the dorsal subcutaneous tissue of rats, removed after 3, 6, or 12 months, and tested for bending strength. The bending strengths (MPa) of GBC50 at baseline (0 months), 3, 6, and 12 months were 136 ± 1, 119 ± 3, 106 ± 5 and 104 ± 5, respectively. Corresponding values were 138 ± 3, 120 ± 3, 110 ± 2 and 109 ± 5 for GBC60, and 106 ± 5, 97 ± 5, 92 ± 4 and 88 ± 4 for CMW-1. Although the bending strengths of all three cements decreased significantly from 0 to 6 months, those of GBC50 and GBC60 did not change significantly thereafter, whereas that of CMW-1 declined significantly between 6 and 12 months. Thus, degradation of GBC50 and GBC60 does not appear to continue after 6 months, whereas CMW-1 degrades progressively over 12 months. Moreover, the bending strengths of GBC50 and GBC60 (especially GBC60) were significantly higher than that of CMW-1 throughout. It is believed that GBC60 is strong enough for use under weight-bearing conditions and that its mechanical strength is retained in vivo; however, its dynamic fatigue behavior will need assessment before application in the clinical setting. © 2003 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 68B: 132,139, 2004 [source]


Mechanical properties and morphologies of polypropylene/single-filler or hybrid-filler calcium carbonate composites

POLYMER ENGINEERING & SCIENCE, Issue 2 2007
Kun Yang
Three types of polypropylene (PP) with different intrinsic toughness were used to study the mechanical properties and morphologies of the PP composites filled with single-filler and hybrid-filler of calcium carbonate particles. The calcium carbonate particles used were with average particle sizes of 25 ,m (CC25), and 0.07 ,m (CC0.07), respectively. A hybrid-filler CaCO3 named CC25/CC0.07 was used as a mixture of CC25 and CC0.07 (CC25/CC0.07 weight ratio = 1:1). It was found that the type of PP and the particle size of inorganic filler were the two important factors for the determination of mechanical properties of the composites. And the general mechanical properties of the composites filled with hybrid-filler CaCO3 were better than those of the composites filled with single-filler CaCO3, but the synergistic hybridization effect of the hybrid-filler CaCO3 did not exist. The major toughening mechanism of the PP/CC25 composites was the cavitation of the matrix caused by CC25, and the major toughening mechanism of the PP/CC0.07 composites was the pinning effect introduced by CC0.07. For the PP/CC25/CC0.07 composites, the cavitation of the matrix caused by CC25 and the pinning effect introduced by CC0.07 existed simultaneously. And when the intrinsic toughness of the matrix was large enough, the major factor to toughen PP was the pinning effect introduced by CC0.07, otherwise the major factor to toughen PP was the cavitation of the matrix caused by CC25. POLYM. ENG. SCI., 47:95,102, 2007. © 2007 Society of Plastics Engineers [source]


Nanostructured polyolefins/clay composites: role of the molecular interaction at the interface

POLYMERS FOR ADVANCED TECHNOLOGIES, Issue 6 2008
Elisa Passaglia
Abstract The extent of interphase interactions between polymer phase and inorganic particles is the driving force addressing the preparation/properties design in the field of the corresponding micro- and nanocomposites. In the case of preparation of nanocomposites based on polyolefins (POs) and inorganic compounds as potentially nanodispersed phase, the use of a PO with proper functional groups is necessary for the interface adhesion and stabilization of the nanostructured morphology. According to this approach, ethylene/propylene copolymers with a different propylene content were used for the preparation of nanocomposites through melt mixing with organophilic montmorillonites (OMMT). By taking into account the important role of functionalities grafted onto POs, two different synthetic approaches were compared here: (1) the dispersion of the inorganic filler was obtained by using previously functionalized POs bearing carboxylate groups as matrices; (2) the nanocomposites were prepared by performing contemporaneously the functionalization of POs (by using maleic anhydride (MAH) and/or diethyl maleate (DEM)) and the dispersion of the filler in a one-step process. The morphology of the nanocomposites as well as the variation of solubility and glass transition temperature (Tg) of the PO matrix were evaluated and tentatively discussed with reference to functionalization degrees, structure of PO, and preparation procedure. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Porphyrin-Functionalized Dendrimers: Synthesis and Application as Recyclable Photocatalysts in a Nanofiltration Membrane Reactor

CHEMISTRY - A EUROPEAN JOURNAL, Issue 22 2005
Suhas A. Chavan Dr.
Abstract The convergent synthesis of a series of porphyrin-functionalized pyrimidine dendrimers has been accomplished by a procedure involving the nucleophilic aromatic substitution (NAS) as a key reaction step. The resulting dendritic porphyrin catalysts show high activity in the light-induced generation of singlet oxygen (1O2) from ground-state oxygen. These materials are synthetically useful photosensitizers for the oxidation of various olefinic compounds to the corresponding allylic hydroperoxides. Catalytic activities and regio- and stereoselectivities of the dendritic photosensitizers are comparable to those observed for mononuclear porphyrin catalysts. Recycling of the dendrimer-enlarged homogeneous photocatalysts was possible by solvent-resistant nanofiltration (SRNF) by using an oxidatively stable membrane consisting of a polysiloxane polymer and ultrastable Y zeolite as inorganic filler. Moreover, this membrane technology provides a safe way to isolate the hydroperoxide products under very mild conditions. The membrane showed high retention for the macromolecular catalysts, even in chlorinated solvents, but some oxidative degradation of the porphyrin units of the dendrimer was observed over multiple catalytic runs. [source]


Comparison of mechanical properties of PP/SEBS blends at intermediate and high strain rates with SiO2 nanoparticles vs.

JOURNAL OF APPLIED POLYMER SCIENCE, Issue 2 2008
CaCO3 fillers
Abstract The present article focuses on the effect of two types of inorganic fillers (SiO2 and CaCO3) on the mechanical properties of PP/SEBS blend. The nominal particle diameters of SiO2 and CaCO3 are 7 nm and 1 ,m, respectively. The studied blend ratios were PP/SEBS/SiO2 (CaCO3) = 75/22/3 and 73/21/6 vol %. The morphology of polymer blends was observed and the distributions of the SEBS, SiO2, and CaCO3 particles were analyzed by transmission electron microscopy (TEM). Tensile tests were conducted at nominal strain rates from 3 × 10,1 to 102 s,1. The apparent elastic modulus has the local strain-rate dependency caused by SiO2 nanoparticles around SEBS particles in the blend of PP/SEBS/SiO2. The yield stress has weak dependency of morphology. The absorbed strain energy has strong dependency of the location of SiO2 nanoparticle or CaCO3 fillers and SEBS particle in the morphology. It is considered that such morphology, in which inorganic nanoparticles are located around SEBS particles, can prevent the brittle fracture while the increased local strain rate can enhance the apparent elastic modulus of the blend at the high strain rate. On the basis of the results of this study, the location and size of inorganic nanoparticles are the most important parameters to increase the elastic modulus without decreasing the material ductility of the blend at both low and high strain rates. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 [source]


Effective thermal conductivity behavior of filled vulcanized perfluoromethyl vinyl ether rubber

JOURNAL OF APPLIED POLYMER SCIENCE, Issue 5 2008
Li Wang
Abstract The effective thermal conductivity behavior of vulcanized perfluoromethyl vinyl ether (PMVE) rubber filled with various inorganic fillers was investigated and analyzed with thermal conductivity models. Experimental results showed that there was no significant improvement in the thermal conductivity of PMVE rubber if the intrinsic thermal conductivity of the fillers was greater than 100 times that of the rubber matrix, and this agreed with the prediction of Maxwell's equation. The thermal conductivity of PMVE rubber filled with larger size silicon carbide (SiC) particles was greater than that of PMVE filled with smaller size SiC because of the lower interfacial thermal resistance, and there existed a transition filler loading at about 60 vol %. It was also found that flocculent graphite was the most effective thermally conductive filler among the fillers studied. A modified form of Agari's equation with a parameter independent on the units used was proposed. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 [source]


Comparative Characterization of PP Nano- and Microcomposites by In-Mold Shrinkage Measurements and Structural Characteristics

MACROMOLECULAR MATERIALS & ENGINEERING, Issue 6 2007
Rodolfo Revilla-Díaz
Abstract Poly(propylene)-clay nanocomposites and poly(propylene) containing conventional inorganic fillers such as calcium carbonate (CaCO3) and glass fiber were used in a comparative study focusing on dimensional stability, structure, mechanical and thermal properties. Micro- and nanocomposites were prepared by melt blending in a twin-screw extruder. The relative influence of each filler was observed from dimensional stability measurements and structural analysis by WAXD, TEM, and thermal and mechanical properties. At equal filler loadings, PP/clay nanocomposites exhibit an improvement in dimensional stability and were the only composites capable of reduced shrinkage in both in-flow and cross-flow directions. The flexural modulus of PP increased nearly 20% by compounding with 4% organoclay, as compared to a similar performance obtained by compounding with 10 wt.-% of CaCO3 or approximately 6 wt.-% of glass fiber. The HDT and thermal stability of PP were enhanced by using nanoclay as filler. [source]


Novel Thermoplastic Composites from Commodity Polymers and Man-Made Cellulose Fibers

MACROMOLECULAR SYMPOSIA, Issue 1 2006
Hans-Peter Fink
Abstract Summary: A new class of fibre reinforced commodity thermoplastics suited for injection moulding and direct processing applications has been developed using man-made cellulosic fibres (Rayon tire yarn, Tencel, Viscose, Carbacell) and thermoplastic commodity polymers, such as polypropylene (PP), polyethylene (PE), high impact polystyrene (HIPS), poly(lactic acid) (PLA), and a thermoplastic elastomer (TPE) as the matrix polymer. For compounding, a specially adapted double pultrusion technique has been employed which provides composites with homogeneously distributed fibres. Extensive investigations were performed with Rayon reinforced PP in view of applications in the automotive industry. The Rayon-PP composite is characterized by high strength and an excellent impact behaviour as compared with glass fibre reinforced PP, thus permitting applications in the field of engineering thermoplastics such as polycarbonate/acrylonitrile butadiene styrene blends (PC/ABS). With the PP based composites the influence of material parameters (e.g. fibre type and load, coupling agent) were studied and it has been demonstrated how to tailor the desired composite properties as modulus and heat distortion temperature (HDT) by varying the fibre type or adding inorganic fillers. Man-made cellulose fibers are also suitable for the reinforcement of further thermoplastic commodity polymers with appropriate processing temperatures. In case of PE modulus and strength are tripled compared to the neat resin while Charpy impact strength is increased five-fold. For HIPS mainly strength and stiffness are increased, while for TPE the property profile is changed completely. With Rayon reinforced PLA, a fully biogenic and biodegradable composite with excellent mechanical properties including highly improved impact strength is presented. [source]


Improving the properties of LDPE/glass fiber composites with silanized-LDPE

POLYMER COMPOSITES, Issue 7 2009
Felipe W. Fabris
Low density polyethylene (LDPE) is a widely used thermoplastic. The dispersion of inorganic fillers in thermoplastic matrices such as polyethylene has been largely employed to improve some of its properties. However, interaction between both components is a major issue so the presence of a coupling agent is usually necessary to increase the interaction among the phases. In this study, LDPE chemically modified with vinyltriethoxysilane (VTES) was used as a coupling agent in glass fiber-reinforced LDPE. The composites were prepared in a mixing chamber and subsequently analyzed by tensile tests, rotational rheometry, and scanning electron microscopy (SEM). The mechanical properties were significantly increased by the use of small amounts of the coupling agent. Moreover, the rheological behavior and the SEM micrographs showed higher interaction between the matrix and the reinforcing phase in the composites containing LDPE modified with VTES, confirming the suitability of using this coupling agent in these systems. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers [source]


Properties of new nanocomposite triblock copolymer gels based on expandable graphite,

POLYMER ENGINEERING & SCIENCE, Issue 9 2008
Marissa A. Paglicawan
In this work, we investigated the effect of expandable graphite (EG) on the property of triblock copolymer prepared from a poly(styrene- b -(ethylene- co -butylene)- b -styrene) (SEBS) imbibed with an EB-compatible hydrocarbon oil. The rheological properties showed that at a temperature between 30 and 40°C below the gel point, the triblock copolymer gels had a dynamic storage modulus (G,) greater than loss modulus (G,), thereby indicating that at ambient temperature, a physical network is still present in spite of the addition of nanoparticles. Dynamic rheological measurements of the resultant nanocomposite triblock copolymer gels confirmed that the addition of EG affects the linear viscoelastic properties and maximum operating temperature of the parent triblock copolymer gels. The mechanical properties showed only marginal increase, which can be attributed to the poor dispersion that leads to agglomeration of particle into micrometer size stacks, and thus the particles behave only as inorganic fillers. The morphology and X-ray diffraction revealed that the EG used to generate nanocomposite triblock copolymer gels is dispersed generally within the swollen copolymer and/or solvent. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers [source]