Anaphase Bridges (anaphase + bridge)

Distribution by Scientific Domains


Selected Abstracts


DNA repair pathways involved in anaphase bridge formation

GENES, CHROMOSOMES AND CANCER, Issue 6 2007
Ceyda Acilan
Cancer cells frequently exhibit gross chromosomal alterations such as translocations, deletions, or gene amplifications an important source of chromosomal instability in malignant cells. One of the better-documented examples is the formation of anaphase bridges,chromosomes pulled in opposite directions by the spindle apparatus. Anaphase bridges are associated with DNA double strand breaks (DSBs). While the majority of DSBs are repaired correctly, to restore the original chromosome structure, incorrect fusion events also occur leading to bridging. To identify the cellular repair pathways used to form these aberrant structures, we tested a requirement for either of the two major DSB repair pathways in mammalian cells: homologous recombination (HR) and nonhomologous end joining (NHEJ). Our observations show that neither pathway is essential, but NHEJ helps prevent bridges. When NHEJ is compromised, the cell appears to use HR to repair the break, resulting in increased anaphase bridge formation. Moreover, intrinsic NHEJ activity of different cell lines appears to have a positive trend with induction of bridges from DNA damage. © 2007 Wiley-Liss, Inc. [source]


Selective elimination of amplified CDK4 sequences correlates with spontaneous adipocytic differentiation in liposarcoma

GENES, CHROMOSOMES AND CANCER, Issue 11 2009
Zofia Hélias-Rodzewicz
Well-differentiated and undifferentiated liposarcomas are characterized by high-level amplifications of chromosome 12 regions including the CDK4 and MDM2 genes. These amplicons are either localized, in well-differentiated liposarcoma (WDLPS), on extrachromosomal structures (ring or rod chromosomes), or integrated into chromosome arms in undifferentiated tumors. Our results reveal that extrachromosomal amplicons are unstable, and frequently lost by micronucleation. This loss correlates with hypermethylation of eliminated sequences and changes of their replication time. Treatment of cells with demethylating agents during early S-phase significantly decreases the rate of micronuclei positive for CDK4. We also demonstrate that, in our model, micronuclei are generated during anaphase as a consequence of anaphase abnormalities (chromosome lagging and anaphase bridges). Finally, a dramatic increase of adipocytic differentiation was noted in cells that have eliminated copies of CDK4 gene in micronuclei. These findings provide evidence that, in WDLPS, adipocytic differentiation could be the consequence of CDK4 loss, an event occurring rarely in undifferentiated tumors in which the amplified sequences are integrated into chromosome arms. © 2009 Wiley-Liss, Inc. [source]


DNA repair pathways involved in anaphase bridge formation

GENES, CHROMOSOMES AND CANCER, Issue 6 2007
Ceyda Acilan
Cancer cells frequently exhibit gross chromosomal alterations such as translocations, deletions, or gene amplifications an important source of chromosomal instability in malignant cells. One of the better-documented examples is the formation of anaphase bridges,chromosomes pulled in opposite directions by the spindle apparatus. Anaphase bridges are associated with DNA double strand breaks (DSBs). While the majority of DSBs are repaired correctly, to restore the original chromosome structure, incorrect fusion events also occur leading to bridging. To identify the cellular repair pathways used to form these aberrant structures, we tested a requirement for either of the two major DSB repair pathways in mammalian cells: homologous recombination (HR) and nonhomologous end joining (NHEJ). Our observations show that neither pathway is essential, but NHEJ helps prevent bridges. When NHEJ is compromised, the cell appears to use HR to repair the break, resulting in increased anaphase bridge formation. Moreover, intrinsic NHEJ activity of different cell lines appears to have a positive trend with induction of bridges from DNA damage. © 2007 Wiley-Liss, Inc. [source]


Resistance to experimental tumorigenesis in cells of a long-lived mammal, the naked mole-rat (Heterocephalus glaber)

AGING CELL, Issue 4 2010
Sitai Liang
Summary The naked mole-rat (NMR, Heterocephalus glaber) is a long-lived mammal in which spontaneous cancer has not been observed. To investigate possible mechanisms for cancer resistance in this species, we studied the properties of skin fibroblasts from the NMR following transduction with oncogenes that cause cells of other mammalian species to form malignant tumors. Naked mole-rat fibroblasts were transduced with a retrovirus encoding SV40 large T antigen and oncogenic RasG12V. Following transplantation of transduced cells into immunodeficient mice, cells rapidly entered crisis, as evidenced by the presence of anaphase bridges, giant cells with enlarged nuclei, multinucleated cells, and cells with large number of chromosomes or abnormal chromatin material. In contrast, similarly transduced mouse and rat fibroblasts formed tumors that grew rapidly without crisis. Crisis was also observed after > 40 population doublings in SV40 TAg/Ras-expressing NMR cells in culture. Crisis in culture was prevented by additional infection of the cells with a retrovirus encoding hTERT (telomerase reverse transcriptase). SV40 TAg/Ras/hTERT-expressing NMR cells formed tumors that grew rapidly in immunodeficient mice without evidence of crisis. Crisis could also be induced in SV40 TAg/Ras-expressing NMR cells by loss of anchorage, but after hTERT transduction, cells were able to proliferate normally following loss of anchorage. Thus, rapid crisis is a response of oncogene-expressing NMR cells to growth in an in vivo environment, which requires anchorage independence, and hTERT permits cells to avoid crisis and to achieve malignant tumor growth. The unique reaction of NMR cells to oncogene expression may form part of the cancer resistance of this species. [source]


Pathology of soft-tissue tumors: Daily diagnosis, molecular cytogenetics and experimental approach

PATHOLOGY INTERNATIONAL, Issue 8 2009
Hiroshi Iwasaki
This article reviews problems in diagnostic pathology and molecular cytogenetics of soft-tissue tumors. Also discussed are the origin of soft-tissue sarcomas and the molecular basis of effective target therapy for sarcomas. Molecular cytogenetic analysis of tumor-specific chromosomal translocations and associated fusion gene transcripts offers a useful adjunct to the diagnosis of soft-tissue tumors, but recent studies have indicated a growing number of fusion gene variations in each tumor type. In pleomorphic sarcoma/malignant fibrous histiocytoma, the alternative lengthening of telomeres (ALT) mechanism may result in formation of anaphase bridges and marked nuclear pleomorphism. The histogenesis of soft-tissue sarcomas has been a matter of controversy. In the present experimental model using s.c. injection of 3-methylcholanthrene in C57BL/6 mice pretreated with bone marrow-transplantation from green fluorescent protein (GFP)-positive green mice, the bone marrow-derived mesenchymal stem cells as well as the tissue-resident mesenchymal cells in the peripheral soft tissues are possible originators of sarcomagenesis. Little is known about a molecular basis of target therapy for sarcomas. Platelet-derived growth factor-BB (PDGF-BB) enhances the invasive activity of malignant peripheral nerve sheath tumor (MPNST) cells through platelet-derived growth factor receptor (PDGFR) phosphorylation, whereas imatinib mesylate inhibited such activity, suggesting that targeting PDGFR-, may result in the establishment of novel treatment for MPNST. In addition, emmprin is a transmembrane glycoprotein on tumor cells that stimulates peritumoral fibroblasts to produce matrix metalloproteinases (MMP), playing a crucial role in tumor progression, invasion and metastasis. The MMP upregulation mechanism mediated by tumor-associated emmprin may be a potentially useful target in anti-tumor invasion therapy for sarcomas. [source]