Hybrid Crosses (hybrid + cross)

Distribution by Scientific Domains

Selected Abstracts


EVOLUTION, Issue 3 2007

We used joint-scaling analyses in conjunction with rearing temperature variation to investigate the contributions of additive, non-additive, and environmental effects to genetic divergence and incipient speciation among 12 populations of the red flour beetle, Tribolium castaneum, with small levels of pairwise nuclear genetic divergence (0.033 < Nei's D < 0.125). For 15 population pairs we created a full spectrum of line crosses (two parental, two reciprocal F1's, four F2's, and eight backcrosses), reared them at multiple temperatures, and analyzed the numbers and developmental defects of offspring. We assayed a total of 219,388 offspring from 5147 families. Failed crosses occurred predominately in F2's, giving evidence of F2 breakdown within this species. In all cases where a significant model could be fit to the data on offspring number, we observed at least one type of digenic epistasis. We also found maternal and cytoplasmic effects to be common components of divergence among T. castaneum populations. In some cases, the most complex model tested (additive, dominance, epistatic, maternal, and cytoplasmic effects) did not provide a significant fit to the data, suggesting that linkage or higher order epistasis is involved in differentiation between some populations. For the limb deformity data, we observed significant genotype-by-environment interaction in most crosses and pure parent crosses tended to have fewer deformities than hybrid crosses. Complexity of genetic architecture was not correlated with either geographic distance or genetic distance. Our results support the view that genetic incompatibilities responsible for postzygotic isolation, an important component of speciation, may be a natural but serendipitous consequence of nonadditive genetic effects and structured populations. [source]


EVOLUTION, Issue 12 2003
Carla R. Hurt
Abstract Long-term geographic isolation can result in reproductive incompatibilities due to forces such as mutation, genetic drift, and differential selection. In the Sonoran topminnow, molecular genetic studies of mtDNA, microsatellites, and MHC genes have shown that the endangered Gila and Yaqui topminnows are substantially different, suggesting that divergence took place approximately two million years ago. Here we examined hybrid crosses and backcrosses between these two allopatric taxa to evaluate the accumulation of postmating barriers to reproduction. These results are then compared with results from a previous study where male topminnows were shown to mate assortatively with conspecific females. Despite their preference for conspecific mates, both types of interspecific crosses successfully produced offspring. There was evidence of reduced hybrid fitness, including smaller mean brood size and male-biased sex ratio, for some classes of backcrosses. Brood sizes and interbrood intervals varied significantly when hybrids were subdivided into different cross categories. Our results illustrate the importance of distinctly defining hybrid classes in studies of reproductive isolation. To our knowledge, this is the first such detailed evolutionary analysis in endangered fish taxa. [source]

Differential performance of reciprocal hybrids in multiple environments

Sarah Kimball
Summary 1Closely related taxa may be maintained as distinct species by a variety of reproductive isolating mechanisms. These include: inability to produce hybrid offspring, endogenous selection against hybrids in the form of genomic incompatibilities, and exogenous selection observable in genotype-by-environment interactions. To understand the relative importance of these three isolating mechanisms, we performed hand-pollination and reciprocal transplant experiments in a natural plant hybrid zone. 2We measured reproductive isolation by making crosses between two parent species of Penstemon and naturally occurring hybrids. Inclusion of reciprocal hybrid crosses allowed us to determine whether fitness components differed depending on the identity of the mother. 3Hybrid performance was evaluated in the greenhouse and in a reciprocal transplant experiment in the field. We measured fruit set, seed set, seed weight, time required for fruits to mature and seedling growth for potted plants. To test for exogenous isolation, we planted pure parents, reciprocal F1 hybrids and later generation hybrids in a reciprocal transplant experiment, and measured survival. 4On average, interspecific crosses produced as many seeds as conspecific crosses. Hybrid performance was also equal to or greater than parents in all environments, including the greenhouse and all field gardens, indicating a lack of endogenous isolation. Parent species and reciprocal F1 hybrids differed in many traits measured. In each field garden, the hybrid with the native cytoplasm had a higher survival rate, suggesting local adaptation to different elevations. 5Synthesis. Exogenous factors that differ along elevational gradients can be more important than intrinsic genetic incompatibilities in determining the fitness of plant hybrids. Our results illustrate the importance of studying hybrid performance in multiple environments and in generating reciprocal hybrids to test for isolating mechanisms in natural hybrid zones. [source]

Lower fitness of hatchery and hybrid rainbow trout compared to naturalized populations in Lake Superior tributaries

Abstract We have documented an early life survival advantage by naturalized populations of anadromous rainbow trout Oncorhynchus mykiss over a more recently introduced hatchery population and outbreeding depression resulting from interbreeding between the two strains. We tested the hypothesis that offspring of naturalized and hatchery trout, and reciprocal hybrid crosses, survive equally from fry to age 1+ in isolated reaches of Lake Superior tributary streams in Minnesota. Over the first summer, offspring of naturalized females had significantly greater survival than offspring of hatchery females in three of four comparisons (two streams and 2 years of stocking). Having an entire naturalized genome, not just a naturalized mother, was important for survival over the first winter. Naturalized offspring outperformed all others in survival to age 1+ and hybrids had reduced, but intermediate, survival relative to the two pure crosses. Averaging over years and streams, survival relative to naturalized offspring was 0.59 for hybrids with naturalized females, 0.37 for the reciprocal hybrids, and 0.21 for hatchery offspring. Our results indicate that naturalized rainbow trout are better adapted to the conditions of Minnesota's tributaries to Lake Superior so that they outperform the hatchery-propagated strain in the same manner that many native populations of salmonids outperform hatchery or transplanted fish. Continued stocking of the hatchery fish may conflict with a management goal of sustaining the naturalized populations. [source]

Eleven microsatellite markers in Nasonia, Ashmead 1904 (Hymenoptera; Pteromalidae)

Christof Pietsch
Abstract We designed primer sequences for 11 microsatellite markers in the jewel wasp Nasonia vitripennis. Most loci could be cross-amplified in Nasonia longicornis and Nasonia giraulti, which make them amenable for linkage analysis in hybrid crosses. Eight loci were assigned to specific chromosomes. Additionally, 10 loci showed allelic variation in a Nasonia vitripennis field population. The observed number of alleles in this population ranged from two to seven, with observed heterozygosities from 0.0750 to 0.4750. [source]

Genetic characterization and gonad development of artificially produced interspecific hybrids of the abalones, Haliotis discus discus Reeve, Haliotis gigantea Gmelin and Haliotis madaka Habe

Faruq Ahmed
Abstract Hybridization among abalone species has been suggested as a possible means to increase their growth rates for aquaculture. As a first step to test the usefulness of the hybrids of Japanese abalone species (Haliotis discus discus, Haliotis gigantea and Haliotis madaka) for aquaculture, we characterized the genetic background and gonad development of hybrids that were produced by artificial insemination. The hybrid status of the resulting offspring was confirmed by assaying 14 allozymes and by RFLP analysis of the 16s rRNA and cytochrome oxidase I (COI) regions of mtDNA using 13 restriction enzymes. Histological examination of the gonads of the hybrids was conducted in comparison with those of the parental species. Cross-breeding among the three species was conducted successfully in all combinations although with lower fertilization rates (means of 1.3,60.8%) than the parental species (34.3,90%). Crosses between H. discus discus and H. madaka had higher fertilization rates (22.4,60.8%) than those involving H. gigantea (1.3,19.9%). The hybrids were ascertained by the presence of both parental genotypes at the LDH-A, ME-A, MDH-A and GPI loci. The maternal origin of the hybrid mtDNA was confirmed by digestion with DdeI, TaqI, HpaII of the COI region. No polymorphism was observed in the 16S rRNA region. The hybrids had gonadal development and maturity stages similar to the parental species up to fully mature oocytes and sperm. They spawned upon stimulation and produced viable offspring with high fertilization rates and successful development to the juvenile stage in back- and homologous hybrid crosses. [source]