Gene Products (gene + products)

Distribution by Scientific Domains
Distribution within Life Sciences

Kinds of Gene Products

  • different gene products


  • Selected Abstracts


    Sister chromatid cohesion: the cohesin cleavage model does not ring true

    GENES TO CELLS, Issue 6 2007
    Vincent Guacci
    Sister chromatid cohesion is important for high fidelity chromosome segregation during anaphase. Gene products that provide structural components (cohesin complex or cohesin) and regulatory components responsible for cohesion are conserved through eukaryotes. A simple model where cohesion establishment occurs by replication through static cohesin rings and cohesion dissolution occurs by Esp1p/separase mediated cleavage of the cohesin rings (Mcd1p/Rad21p/Scc1p sub-unit cleavage) has become widespread. A growing body of evidence is inconsistent with this ring cleavage model. This review will summarize the evidence showing that cohesin complex is not static but is regulated at multiple cell cycle stages before anaphase in a separase independent manner. Separase is indeed required at anaphase for complete chromosome segregation. However, multiple mechanisms for cohesion dissolution appear to act concurrently during anaphase. Separase is only one such mechanism and its importance varies from organism to organism. The idea that cohesin is a dynamic complex subjected to regulation at various cell cycle stages by multiple mechanisms makes sense in light of the myriad functions in which it has been implicated, such as DNA damage repair, gene silencing and chromosome condensation. [source]


    Gene products encoded in the ninR region of phage , participate in Red-mediated recombination

    GENES TO CELLS, Issue 4 2002
    Trudee A. Tarkowski
    Background:, The ninR region of phage , contains two recombination genes, orf (ninB) and rap (ninG), that were previously shown to have roles when the RecF and RecBCD recombination pathways of E. coli, respectively, operate on phage ,. Results:, When , DNA replication is blocked, recombination is focused at the termini of the virion chromosome. Deletion of the ninR region of , decreases the sharpness of the focusing without diminishing the overall rate of recombination. The phenotype is accounted for in large part by the deletion of rap and of orf. Mutation of the recJ gene of the host partially suppresses the Rap, phenotype. Conclusion: ninR functions Orf and Rap participate in Red recombination, the primary pathway operating when wild-type , grows lytically in rec+ cells. The ability of recJ mutation to suppress the Rap, phenotype indicates that RecJ exonuclease can participate in Red-mediated recombination, at least in the absence of Rap function. A model is presented for Red-mediated RecA-dependent recombination that includes these newly identified participants. [source]


    Biochemical and molecular responses to water stress in resurrection plants

    PHYSIOLOGIA PLANTARUM, Issue 2 2004
    Giovanni Bernacchia
    A small group of angiosperms, known as resurrection plants, can tolerate extreme dehydration. They survive in arid environments because they are able to dehydrate, remain quiescent during long periods of drought, and then resurrect upon rehydration. Dehydration induces the expression of a large number of transcripts in resurrection plants. Gene products with a putative protective function such as LEA proteins have been identified; they are expressed at high levels in the cytoplasm or in chloroplasts upon dehydration and/or ABA treatment of vegetative tissue. An increase in sugar concentration is usually observed at the onset of desiccation in vegetative tissue of resurrection plants. These sugars may be effective in osmotic adjustment or they may stabilize membrane structures and proteins. Regulatory genes such as a protein translation initiation factor, homeodomain-leucine zipper genes and a gene probably working as a regulatory RNA have been isolated and characterized. The knowledge of the biochemical and molecular responses that occur during the onset of drought may help to improve water stress tolerance in plants of agronomic importance. [source]


    The effects of acute and chronic exercise on the vasculature

    ACTA PHYSIOLOGICA, Issue 4 2010
    J. J. Whyte
    Abstract Regular physical activity (endurance training, ET) has a strong positive link with cardiovascular health. The aim of this review is to draw together the current knowledge on gene expression in different cell types comprising the vessels of the circulatory system, with special emphasis on the endothelium, and how these gene products interact to influence vascular health. The effect beneficial effects of ET on the endothelium are believed to result from increased vascular shear stress during ET bouts. A number of mechanosensory mechanisms have been elucidated that may contribute to the effects of ET on vascular function, but there are questions regarding interactions among molecular pathways. For instance, increases in flow brought on by ET can reduce circulating levels of viscosity and haemostatic and inflammatory variables that may interact with increased shear stress, releasing vasoactive substances such as nitric oxide and prostacyclin, decreasing permeability to plasma lipoproteins as well as the adhesion of leucocytes. At this time the optimal rate-of-flow and rate-of-change in flow for determining whether anti-atherogenic or pro-atherogenic processes proceed remain unknown. In addition, the impact of haemodynamic variables differs with vessel size and tissue type in which arteries are located. While the hurdles to understanding the mechanism responsible for ET-induced alterations in vascular cell gene expression are significant, they in no way undermine the established benefits of regular physical activity to the cardiovascular system and to general overall health. This review summarizes current understanding of control of vascular cell gene expression by exercise and how these processes lead to improved cardiovascular health. [source]


    Phylogeny of the teashirt-related zinc finger (tshz) gene family and analysis of the developmental expression of tshz2 and tshz3b in the zebrafish

    DEVELOPMENTAL DYNAMICS, Issue 3 2010
    Joana S. Santos
    Abstract The tshz genes comprise a family of evolutionarily conserved transcription factors. However, despite the major role played by Drosophila tsh during the development of the fruit fly, the expression and function of other tshz genes have been analyzed in a very limited set of organisms and, therefore, our current knowledge of these genes is still fragmentary. In this study, we perform detailed phylogenetic analyses of the tshz genes, identify the members of this gene family in zebrafish and describe the developmental expressions of two of them, tshz2 and tshz3b, and compare them with meis1, meis2.1, meis2.2, pax6a, and pax6b expression patterns. The expression patterns of these genes define a complex set of coexpression domains in the developing zebrafish brain where their gene products have the potential to interact. Developmental Dynamics 239:1010,1018, 2010. © 2010 Wiley-Liss, Inc. [source]


    Analysis of pattern precision shows that Drosophila segmentation develops substantial independence from gradients of maternal gene products

    DEVELOPMENTAL DYNAMICS, Issue 11 2006
    David M. Holloway
    Abstract We analyze the relation between maternal gradients and segmentation in Drosophila, by quantifying spatial precision in protein patterns. Segmentation is first seen in the striped expression patterns of the pair-rule genes, such as even-skipped (eve). We compare positional precision between Eve and the maternal gradients of Bicoid (Bcd) and Caudal (Cad) proteins, showing that Eve position could be initially specified by the maternal protein concentrations but that these do not have the precision to specify the mature striped pattern of Eve. By using spatial trends, we avoid possible complications in measuring single boundary precision (e.g., gap gene patterns) and can follow how precision changes in time. During nuclear cleavage cycles 13 and 14, we find that Eve becomes increasingly correlated with egg length, whereas Bcd does not. This finding suggests that the change in precision is part of a separation of segmentation from an absolute spatial measure, established by the maternal gradients, to one precise in relative (percent egg length) units. Developmental Dynamics 235:2949,2960, 2006. © 2006 Wiley-Liss, Inc. [source]


    An automated in situ hybridization screen in the medaka to identify unknown neural genes

    DEVELOPMENTAL DYNAMICS, Issue 3 2005
    Carole Deyts
    Abstract Despite the fact that a large body of factors that play important roles in development are known, there are still large gaps in understanding the genetic pathways that govern these processes. To find previously unknown genes that are expressed during embryonic development, we optimized and performed an automated whole-mount in situ hybridization screen on medaka embryos at the end of somitogenesis. Partial cDNA sequences were compared against public databases and identified according to similarities found to other genes and gene products. Among 321 isolated genes showing specific expression in the central nervous system in at least one of five stages of development, 55.14% represented genes whose functions are already documented (in fish or other model organisms). Additionally, 16.51% were identified as conserved unknown genes or genes with unknown function. We provide new data on eight of these genes that presented a restricted expression pattern that allowed for formulating testable hypotheses on their developmental roles, and that were homologous to mammalian molecules of unknown function. Thus, gene expression screening in medaka is an efficient tool for isolating new regulators of embryonic development, and can complement genome-sequencing projects that are producing a high number of genes without ascribed functions. Developmental Dynamics 234:698,708, 2005. © 2005 Wiley-Liss, Inc. [source]


    Bves expression during avian embryogenesis

    DEVELOPMENTAL DYNAMICS, Issue 3 2004
    Megan E. Osler
    Abstract Bves (blood vessel/epicardial substance) is a transmembrane protein postulated to play a role in cell adhesion. While it is clear that Bves and gene products of the same family are expressed in adult striated muscle cells, the distribution of these proteins during development has not been critically examined. An understanding of the expression pattern of Bves is essential for a determination of protein function and its role in embryogenesis. In this study, we present an expression analysis of Bves during chick gastrulation and germ layer formation. Our data show that Bves is expressed in epithelia of all three germ layers early in development. Furthermore, Bves protein is observed in epithelial tissues during organogenesis, specifically the developing epidermis, the gut endoderm, and the epicardium of the heart. These data support the hypothesis that Bves may play a role in cell adhesion and movement of epithelia during early embryogenesis. Developmental Dynamics 229:658,667, 2004. © 2004 Wiley-Liss, Inc. [source]


    T-box gene products are required for mesenchymal induction of epithelial branching in the embryonic mouse lung

    DEVELOPMENTAL DYNAMICS, Issue 1 2003
    Judith A. Cebra-Thomas
    Abstract The regulation of signaling pathways is a prerequisite for coordinating the induction between mesenchymal and epithelial tissues during morphogenesis. Mesenchymal FGF10 is known to be an important paracrine factor regulating the branching morphogenesis of the bronchial epithelium. By using antisense oligonucleotides (AS ODNs) and in vitro culture of embryonic lungs, we demonstrate that the transcription factors Tbx4 and Tbx5 are critical for the expression of mesenchymal FGF10. Treatment of embryonic lung cultures with AS ODNs to Tbx4 and Tbx5 reduces the level of these transcripts, suppresses Fgf10 expression in the mesenchyme, and completely eliminates the formation of new lung branches. If FGF10 is locally replaced in these AS ODN-treated lungs, epithelial branching is restored. These studies provide evidence that the production of branching signals by the lung mesenchyme is mediated by T-box genes. © 2002 Wiley-Liss, Inc. [source]


    Conservation and expression of IQ-domain-containing calpacitin gene products (neuromodulin/GAP-43, neurogranin/RC3) in the adult and developing oscine song control system

    DEVELOPMENTAL NEUROBIOLOGY, Issue 2-3 2009
    David F. Clayton
    Abstract Songbirds are appreciated for the insights they provide into regulated neural plasticity. Here, we describe the comparative analysis and brain expression of two gene sequences encoding probable regulators of synaptic plasticity in songbirds: neuromodulin (GAP-43) and neurogranin (RC3). Both are members of the calpacitin family and share a distinctive conserved core domain that mediates interactions between calcium, calmodulin, and protein kinase C signaling pathways. Comparative sequence analysis is consistent with known phylogenetic relationships, with songbirds most closely related to chicken and progressively more distant from mammals and fish. The C-terminus of neurogranin is different in birds and mammals, and antibodies to the protein reveal high expression in adult zebra finches in cerebellar Purkinje cells, which has not been observed in other species. RNAs for both proteins are generally abundant in the telencephalon yet markedly reduced in certain nuclei of the song control system in adult canaries and zebra finches: neuromodulin RNA is very low in RA and HVC (relative to the surrounding pallial areas), whereas neurogranin RNA is conspicuously low in Area X (relative to surrounding striatum). In both cases, this selective downregulation develops in the zebra finch during the juvenile song learning period, 25,45 days after hatching. These results suggest molecular parallels to the robust stability of the adult avian song control circuit. © 2008 Wiley Periodicals, Inc. Develop Neurobiol, 2009 [source]


    Proteomic mapping of the hyperthermophilic and acidophilic archaeon Sulfolobus solfataricus P2

    ELECTROPHORESIS, Issue 14 2006
    Richard C. Barry
    Abstract A proteomic map of Sulfolobus solfataricus,P2, an archaeon that grows optimally at 80°C and pH,3.2, was developed using high-resolution 2-DE and peptide mass fingerprinting. A total of 867,protein spots (659,aqueous Tris-soluble spots and 208,aqueous Tris-insoluble) were mapped over IPG,3,10, 4,7, and 6,11, with second-dimensional gels made of 8,18%,polyacrylamide. Three hundred and twenty-four different gene products were represented by the 867,spots, with 274,gene products being identified in the Tris-soluble fractions and 100,gene products in the Tris-insoluble portion. Fifty gene products were found on gels from both fractions. Additionally, an average of 1.50 ± 0.12 isoforms/protein was identified. This mapping study confirmed the expression of proteins involved in numerous metabolic, transport, energy production, nucleic acid replication, translation, and transcription pathways. Of particular interest, phosphoenolpyruvate carboxykinase,(SSO2537) was detected even though the pathway for gluconeogenesis is unknown for this archaeon. Tris-soluble fractions contained many cytosolic proteins while Tris-insoluble fractions contained many membrane-associated proteins, including ABC transporters and an ATP synthase. This study provides an optimized 2-DE approach for investigating the biochemical pathways and post-translational modifications employed by Sulfolobus to survive in its extreme environment. [source]


    An integrated map of the murine hippocampal proteome based upon five mouse strains

    ELECTROPHORESIS, Issue 13 2006
    Daniela D. Pollak
    Abstract With the advent of proteomics technologies it is possible to simultaneously demonstrate the expression of hundreds of proteins. The information offered by proteomics provides context-based understanding of cellular protein networks and has been proven to be a valuable approach in neuroscience studies. The mouse hippocampus has been a major target of analysis in the search for molecular correlates to neuronal information storage. Although human and rat hippocampal samples have been successfully subjected to proteomic profiling, no elaborate analysis providing the fundamental experimental basis for protein-expression studies in the mouse hippocampus has been carried out as yet. This led us to construct a master map generated from the individual hippocampal proteomes of five different mouse strains. A proteomic approach, based upon 2-DE coupled to MS (MALDI-TOF/TOF) has been chosen in an attempt to establish a comprehensive reference database of proteins expressed in the mouse hippocampus. 469 individual proteins, represented by 1156 spots displaying various functional states of the respective gene products were identified. Proteomic profiling of the hippocampus, a brain region with a pivotal role for neuronal information processing and storage may provide insight into the characteristics of proteins serving this highly sophisticated function. [source]


    Comprehensive proteome analysis by chromatographic protein prefractionation

    ELECTROPHORESIS, Issue 7-8 2004
    Pierre Lescuyer
    Abstract Protein copy number is distributed from 7 to 8 orders of magnitude in cells and probably up to 12 orders of magnitude in plasma. Classical silver-stained two-dimensional electrophoresis (2-DE) can only display up to four orders of magnitude. This is a major drawback since it is assumed that most of the regulatory proteins are low-abundance gene products. It is thus clear that the separation of low copy number proteins in amounts sufficient for postseparation analysis is an important issue in proteome studies to complete the comprehensive description of the proteome of any given cell type. The visualization of a polypeptide on a 2-DE gel will depend on the copy number, on the quantity loaded onto the gel and on the method of detection. As the amount of protein that can be loaded onto a gel is limited, one efficient solution is to fractionate the sample prior to 2-DE analysis. Several approaches exist including subcellular fractionation, affinity purification and chromatographic and electrophoretic protein prefractionation. The chromatographic step adds a new dimension in the protein separation using specific protein properties. It allows proteins to be adsorbed to a surface and eluted differentially under certain conditions. This review article presents studies combining chromatography-based methods to 2-DE analysis and draws general conclusions on this strategy. [source]


    Environmental carcinogens and p53 tumor-suppressor gene interactions in a transgenic mouse model for mammary carcinogenesis

    ENVIRONMENTAL AND MOLECULAR MUTAGENESIS, Issue 2-3 2002
    Daniel Medina
    Abstract Mouse mammary tumorigenesis is greatly influenced by a variety of exogenous agents, such as MMTV, chemical carcinogens (i.e., polycyclic aromatic hydrocarbons), and radiation, as well as by endogenous/physiological factors, such as steroid hormones, tumor-suppressor genes (i.e., Brca1/2,p53), and gene products of modifier genes. In the mouse model, the most frequently used chemical carcinogen has been 7,12-dimethylbenz[a]anthracene (DMBA), which activates the Ha- ras gene but does not alter the p53 tumor-suppressor gene. However, on an existing background of p53 gene alteration, low doses of DMBA are strongly cocarcinogenic. Using a transgenic model system, in which the p53 gene was deleted in the mammary gland, we examined the carcinogenic effects of a variety of external agents and internal factors given at either low doses or physiological doses. These agents/factors included DMBA, ,-radiation, Brca2 heterozygosity, and steroid hormones. All agents/factors increased the tumorigenic response of the p53 null mammary cells, even under conditions where no tumorigenic response was observed in the p53 wildtype mammary cell. The strongest cocarcinogenic effect was observed with the steroid hormone progesterone. The majority of tumors were highly aneuploid and composed of nuclear igh-grade cells. The mechanism for the aneuploidy and secondary events associated with high tumorigenicity were examined using array technology. These results demonstrate that, on a background of underlying genetic instability, very low doses of environmental mutagens and mitogens can produce strong cocarcinogenic effects. Environ. Mol. Mutagen. 39:178,183, 2002. © 2002 Wiley-Liss, Inc. [source]


    Renal phosphate handling in human , what can we learn from hereditary hypophosphataemias?

    EUROPEAN JOURNAL OF CLINICAL INVESTIGATION, Issue 6 2010
    Stefan Amatschek
    Eur J Clin Invest 2010; 40 (6): 552,560 Abstract Background, Renal reabsorption of inorganic phosphate is critical for the maintenance of phosphate homeostasis. The sodium dependent phosphate cotransporters NaPi-IIa and NaPi-IIc have been identified to fulfill this task at the brush border membrane of proximal tubule cells. Various factors including dietary phosphate intake, parathyroid hormone, or the so called phosphatonins such as FGF23 have been shown to regulate activity of these transporters. Design, This review seeks to give an update on our current knowledge about regulatory mechanisms involved in human renal phosphate reabsorption. Results, Recently, an increasing number of genes have been identified that are directly associated with inherited phosphate wasting disorders (Klotho, PHEX, DMP1 and NHERF1). Several of these genes are predominantly expressed by osteocytes and osteoclasts in the bone suggesting indispensable signalling pathways between kidneys and the skeleton. Conclusion, In this review, the affected gene products in these inherited hypophosphataemias and their contribution to phosphate homeostasis are discussed. [source]


    Mixed-lineage eosinophil/basophil crisis in MDS: a rare form of progression

    EUROPEAN JOURNAL OF CLINICAL INVESTIGATION, Issue 6 2008
    F. Wimazal
    ABSTRACT Background, Basophilic crisis and eosinophilia are well recognized features of advanced chronic myeloid leukaemia. In other myeloid neoplasms, however, transformation with marked basophilia and eosinophilia is considered unusual. Design, We examined the long-term follow-up of 322 patients with de novo myelodysplastic syndromes (MDS) to define the frequency of basophilic, eosinophilic and mixed lineage (basophilic and eosinophilic) transformation. Results, Of all patients, only one developed mixed lineage crisis (, 20% basophils and , 20% eosinophils). In this patient, who initially suffered from chronic myelomonocytic leukaemia, basophils increased to 48% and eosinophils up to 31% at the time of progression. Mixed lineage crisis was not accompanied by an increase in blast cells or organomegaly. The presence of BCR/ABL and other relevant fusion gene products (FIP1L1/PDGFRA, AML1/ETO, PML/RAR,, CBF,/MYH11) were excluded by PCR. Myelomastocytic transformation/myelomastocytic leukaemia and primary mast cell disease were excluded by histology, KIT mutation analysis, electron microscopy and immunophenotyping. Basophils were thus found to be CD123+, CD203c+, BB1+, KIT- cells, and to express a functional IgE-receptor. Among the other patients with MDS examined, 4(1·2%) were found to have marked basophilia (, 20%) and 7(2·1%) were found to have massive eosinophilia ( , 20%), whereas mixed-lineage crisis was detected in none of them. Conclusions, Mixed basophil/eosinophil crisis may develop in patients with MDS but is an extremely rare event. [source]


    Peptide signaling paths related to intoxication, memory and addiction

    ADDICTION BIOLOGY, Issue 3 2000
    William E. M. Lands
    Many peptides bind to G protein-coupled receptors and activate intracellular signaling paths for adaptive cellular responses. The components of these paths can be affected by signals from other neurotransmitters to produce overall integrated results not easily predicted from customary a priori considerations. This intracellular cross-talk among signaling paths provides a "filter" through which long-term tonic signals affect short-term phasic signals as they progress toward the nucleus and induce long-term adaptation of gene expression which provide enduring attributes of acquired memories and addictions. Peptides of the PACAP family provide intracellular signaling that involves kinases, scaffolding interactions, Ca2 + mobilization, and gene expression to facilitate development of tolerance to alcohol and development of associative memories. The peptide-induced enhancement of NMDA receptor responses to extracellular glutamate also may increase behavioral sensitization to the low doses of alcohol that occur at the onset of each bout of drinking. Because many gene products participate in each signaling path, each behavioral response to alcohol is a polygenic process of many steps with no single gene product sufficient to interpret fully the adaptive response to alcohol. Different susceptibility of individuals to alcohol addiction may be a cumulative result of small differences among the many signaling components. Understanding this network of signals may help interpret future "magic bullets" proposed to treat addiction. [source]


    Metaplasticity of the late-phase of long-term potentiation: a critical role for protein kinase A in synaptic tagging

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 7 2006
    Jennie Z. Young
    Abstract The late-phase of long-term potentiation (L-LTP) in hippocampal area CA1 requires gene expression and de novo protein synthesis but it is expressed in an input-specific manner. The ,synaptic tag' theory proposes that gene products can only be captured and utilized at synapses that have been ,tagged' by previous activity. The mechanisms underlying synaptic tagging, and its activity dependence, are largely undefined. Previously, we reported that low-frequency stimulation (LFS) decreases the stability of L-LTP in a cell-wide manner by impairing synaptic tagging. We show here that a phosphatase inhibitor, okadaic acid, blocked homosynaptic and heterosynaptic inhibition of L-LTP by prior LFS. In addition, prior LFS homosynaptically and heterosynaptically impaired chemically induced synaptic facilitation elicited by forskolin/3-isobutyl-1-methylxanthine, suggesting that there is a cell-wide dampening of cAMP/protein kinase A (PKA) signaling concurrent with phosphatase activation. We propose that prior LFS impairs expression of L-LTP by inhibiting synaptic tagging through its actions on the cAMP/PKA pathway. In support of this notion, we show that hippocampal slices from transgenic mice that have genetically reduced hippocampal PKA activity display impaired synaptic capture of L-LTP. An inhibitor of PKA, KT-5720, also blocked synaptic capture of L-LTP. Moreover, pharmacological activation of the cAMP/PKA pathway can produce a synaptic tag to capture L-LTP expression, resulting in persistent synaptic facilitation. Collectively, our results show that PKA is critical for synaptic tagging and for input-specific L-LTP. PKA-mediated signaling can be constrained by prior episodes of synaptic activity to regulate subsequent L-LTP expression and perhaps control the integration of multiple synaptic events over time. [source]


    The actin-binding protein profilin I is localized at synaptic sites in an activity-regulated manner

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 1 2005
    Henrike Neuhoff
    Abstract Morphological changes at synaptic specializations have been implicated in regulating synaptic strength. Actin turnover at dendritic spines is regulated by neuronal activity and contributes to spine size, shape and motility. The reorganization of actin filaments requires profilins, which stimulate actin polymerization. Neurons express two independent gene products , profilin I and profilin II. A role for profilin II in activity-dependent mechanisms at spine synapses has recently been described. Although profilin I interacts with synaptic proteins, little is known about its cellular and subcellular localization in neurons. Here, we investigated the subcellular distribution of this protein in brain neurons as well as in hippocampal cultures. Our results indicate that the expression of profilin I varies in different brain regions. Thus, in cerebral cortex and hippocampus profilin I immunostaining was associated predominantly with dendrites and was present in a subset of dendritic spines. In contrast, profilin I in cerebellum was associated primarily with presynaptic structures. Profilin I immunoreactivity was partially colocalized with the synaptic molecules synaptophysin, PSD-95 and gephyrin in cultured hippocampal neurons, indicating that profilin I is present in only a subset of synapses. At dendritic spine structures, profilin I was found primarily in protrusions, which were in apposition to presynaptic terminal boutons. Remarkably, depolarization with KCl caused a moderate but significant increase in the number of synapses containing profilin I. These results show that profilin I can be present at both pre- and postsynaptic sites and suggest a role for this actin-binding protein in activity-dependent remodelling of synaptic structure. [source]


    Molecular-feature domains with posterodorsal,anteroventral polarity in the symmetrical sensory maps of the mouse olfactory bulb: mapping of odourant-induced Zif268 expression

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 10 2002
    Koichiro Inaki
    Abstract Individual glomeruli in the mammalian olfactory bulb presumably represent a single type of odourant receptor. Thus, the glomerular sheet provides odourant receptor maps at the surface of the olfactory bulb. To understand the basic spatial organization of the olfactory sensory maps, we first compared the spatial distribution of odourant-induced responses measured by the optical imaging of intrinsic signals with that detected immunohistochemically by expressions of Zif268, one of the immediate early gene products in juxtaglomerular cells. In the dorsal surface of the bulb, we detected a clear correlation in the spatial pattern between these responses. In addition, the molecular-feature domains and their polarities (spatial shifts of responses with an increase in carbon chain length) that were defined by the optical imaging method could be also detected by the Zif268 mapping method. We then mapped the Zif268 signals over the entire olfactory bulb using a homologous series of fatty acids and aliphatic alcohols as stimulus odourants. We superimposed the Zif268 signals onto the standard unrolled map with the help of cell adhesion molecule compartments. Each odourant typically elicited two pairs of clusters of dense Zif268 signals. The results showed that molecular-feature domains and their polarities were arranged symmetrically at stereotypical positions in a mirror-image fashion between the lateral and the medial sensory maps. The polarity of each domain was roughly in parallel with the posterodorsal,anteroventral axis that was defined by the cell adhesion molecule compartments. These results suggest that the molecular-feature domain with its fixed polarity is one of the basic structural units in the spatial organization of the odourant receptor maps in the olfactory bulb. [source]


    Proteomic profiling reveals a catalogue of new candidate proteins for human skin aging

    EXPERIMENTAL DERMATOLOGY, Issue 10 2010
    Martin Laimer
    Abstract:, Studies of skin aging are usually performed at the genomic level by investigating differentially regulated genes identified through subtractive hybridization or microarray analyses. In contrast, relatively few studies have investigated changes in protein expression of aged skin using proteomic profiling by two-dimensional (2-D) gel electrophoresis and mass spectrometry, although this approach at the protein level is suggested to reflect more accurately the aging phenotype. We undertook such a proteomic analysis of intrinsic human skin aging by quantifying proteins extracted and fluorescently labeled from sun-protected human foreskin samples pooled from ,young' and ,old' men. In addition, we analyzed these candidate gene products by 1-D and 2-D western blotting to obtain corroborative protein expression data, and by both real-time PCR (RT-PCR) and microarray analyses to confirm expression at the mRNA level. We discovered 30 putative proteins for skin aging, including previously unrecognized, post-translationally regulated candidates such as phosphatidyl-ethanolamine binding protein (PEBP) and carbonic anhydrase 1 (CA1). [source]


    Transgenic Animals in Cardiovascular Disease Research

    EXPERIMENTAL PHYSIOLOGY, Issue 6 2000
    Michael Bader
    Worldwide, the highest morbidity and mortality results from such cardiovascular diseases as hypertension, myocardial infarction, cardiac and renal failure, as well as stroke. Since the cardiovascular system and its regulation is quite complex, study of these disorders has been grossly limited to whole organism models. As a result, in recent years, transgenic technology has played a significant role in the discovery of specific gene products for cardiovascular regulation and disease aetiology. Genetic manipulation in rats and mice has altered the expression of numerous genes. In this review, some of the important new genetically modified animals (i.e. transgenic models) with alterations in hormone and second messenger systems involved in cardiovascular regulation are summarized. [source]


    A unique lipoylation system in the Archaea

    FEBS JOURNAL, Issue 15 2009
    Lipoylation in Thermoplasma acidophilum requires two proteins
    Members of the 2-oxoacid dehydrogenase multienzyme complex family play a key role in the pathways of central metabolism. Post-translational lipoylation of the dihydrolipoyl acyltransferase component of these complexes is essential for their activity, the lipoyllysine moiety performing the transfer of substrates and intermediates between the different active sites within these multienzyme systems. We have previously shown that the thermophilic archaeon, Thermoplasma acidophilum, has a four-gene cluster encoding the components of such a complex, which, when recombinantly expressed in Escherichia coli, can be assembled into an active multienzyme in vitro. Crucially, the E. coli host carries out the required lipoylation of the archaeal dihydrolipoyl acyltransferase component. Because active 2-oxoacid dehydrogenase multienzyme complexes have never been detected in any archaeon, the question arises as to whether Archaea possess a functional lipoylation system. In this study, we report the cloning and heterologous expression of two genes from Tp. acidophilum whose protein products together show significant sequence identity with the single lipoate protein ligase enzyme of bacteria. We demonstrate that both recombinantly expressed Tp. acidophilum proteins are required for lipoylation of the acyltransferase, and that the two proteins associate together to carry out this post-translational modification. From the published DNA sequences, we suggest the presence of functional transcriptional and translational regulatory elements, and furthermore we present preliminary evidence that lipoylation occurs in vivo in Tp. acidophilum. This is the first report of the lipoylation machinery in the Archaea, which is unique in that the catalytic activity is dependent on two separate gene products. Structured digital abstract ,,MINT-7103712: E2lipD (uniprotkb:Q9HIA5), CTD (uniprotkb:Q9HKT2) and LplA (uniprotkb:Q9HKT1) physically interact (MI:0915) by molecular sieving (MI:0071) [source]


    An ecdysteroid-inducible insulin-like growth factor-like peptide regulates adult development of the silkmoth Bombyx mori

    FEBS JOURNAL, Issue 5 2009
    Naoki Okamoto
    Insulin-like growth factors (IGFs) play essential roles in fetal and postnatal growth and development of mammals. They are secreted by a wide variety of tissues, with the liver being the major source of circulating IGFs, and regulate cell growth, differentiation and survival. IGFs share some biological activities with insulin but are secreted in distinct physiological and developmental contexts, having specific functions. Although recent analyses of invertebrate genomes have revealed the presence of multiple insulin family peptide genes in each genome, little is known about functional diversification of the gene products. Here we show that a novel insulin family peptide of the silkmoth Bombyx mori, which was purified and sequenced from the hemolymph, is more like IGFs than like insulin, in contrast to bombyxins, which are previously identified insulin-like peptides in B. mori. Expression analysis reveals that this IGF-like peptide is predominantly produced by the fat body, a functional equivalent of the vertebrate liver and adipocytes, and is massively released during pupa,adult development. Studies using in vitro tissue culture systems show that secretion of the peptide is stimulated by ecdysteroid and that the secreted peptide promotes the growth of adult-specific tissues. These observations suggest that this peptide is a Bombyx counterpart of vertebrate IGFs and that functionally IGF-like peptides may be more ubiquitous in the animal kingdom than previously thought. Our results also suggest that the known effects of ecdysteroid on insect adult development may be in part mediated by IGF-like peptides. [source]


    Prediction of missing enzyme genes in a bacterial metabolic network

    FEBS JOURNAL, Issue 9 2007
    Reconstruction of the lysine-degradation pathway of Pseudomonas aeruginosa
    The metabolic network is an important biological network which consists of enzymes and chemical compounds. However, a large number of metabolic pathways remains unknown, and most organism-specific metabolic pathways contain many missing enzymes. We present a novel method to identify the genes coding for missing enzymes using available genomic and chemical information from bacterial genomes. The proposed method consists of two steps: (a) estimation of the functional association between the genes with respect to chromosomal proximity and evolutionary association, using supervised network inference; and (b) selection of gene candidates for missing enzymes based on the original candidate score and the chemical reaction information encoded in the EC number. We applied the proposed methods to infer the metabolic network for the bacteria Pseudomonas aeruginosa from two genomic datasets: gene position and phylogenetic profiles. Next, we predicted several missing enzyme genes to reconstruct the lysine-degradation pathway in P. aeruginosa using EC number information. As a result, we identified PA0266 as a putative 5-aminovalerate aminotransferase (EC 2.6.1.48) and PA0265 as a putative glutarate semialdehyde dehydrogenase (EC 1.2.1.20). To verify our prediction, we conducted biochemical assays and examined the activity of the products of the predicted genes, PA0265 and PA0266, in a coupled reaction. We observed that the predicted gene products catalyzed the expected reactions; no activity was seen when both gene products were omitted from the reaction. [source]


    Guanosine diphosphate-4-keto-6-deoxy- d -mannose reductase in the pathway for the synthesis of GDP-6-deoxy- d -talose in Actinobacillus actinomycetemcomitans

    FEBS JOURNAL, Issue 23 2002
    Nao Suzuki
    The serotype a-specific polysaccharide antigen of Actinobacillus actinomycetemcomitans is an unusual sugar, 6-deoxy- d -talose. Guanosine diphosphate (GDP)-6-deoxy- d -talose is the activated sugar nucleotide form of 6-deoxy- d -talose, which has been identified as a constituent of only a few microbial polysaccharides. In this paper, we identify two genes encoding GDP-6-deoxy- d -talose synthetic enzymes, GDP-,- d -mannose 4,6-dehydratase and GDP-4-keto-6-deoxy- d -mannose reductase, in the gene cluster required for the biosynthesis of serotype a-specific polysaccharide antigen from A. actinomycetemcomitans SUNYaB 75. Both gene products were produced and purified from Escherichia coli transformed with plasmids containing these genes. Their enzymatic reactants were analysed by reversed-phase HPLC (RP-HPLC). The sugar nucleotide produced from GDP-,- d -mannose by these enzymes was purified by RP-HPLC and identified by electrospray ionization-MS, 1H nuclear magnetic resonance, and GC/MS. The results indicated that GDP-6-deoxy- d -talose is produced from GDP-,- d -mannose. This paper is the first report on the GDP-6-deoxy- d -talose biosynthetic pathway and the role of GDP-4-keto-6-deoxy- d -mannose reductase in the synthesis of GDP-6-deoxy- d -talose. [source]


    Macrolide-affected Toll-like receptor 4 expression from Helicobacter pylori -infected monocytes does not modify interleukin-8 production

    FEMS IMMUNOLOGY & MEDICAL MICROBIOLOGY, Issue 2 2005
    Joon Yong Park
    Abstract Macrolide antibiotics have an anti-inflammatory effect by suppressing lipopolysaccharide-induced IL-8 production. IL-8 secretion from monocytes is observed in Helicobacter pylori infection. Although cag gene products are known to induce IL-8 secretion, whether other bacterial substances can initiate the reaction is not determined. In this study, we show that clarithromycin induced down-regulation of Toll-like receptor 4 expression and did not lead to a decrease in IL-8 production and H. pylori lipopolysaccharide. However, Toll-like receptor 4 activation was possibly not the main cause in the induction of inflammation during H. pylori infection. [source]


    Identification of phosphatidylserine decarboxylases 1 and 2 from Pichia pastoris

    FEMS YEAST RESEARCH, Issue 6 2009
    Tamara Wriessnegger
    Abstract Genetic manipulation of lipid biosynthetic enzymes allows modification of cellular membranes. We made use of this strategy and constructed mutants in phospholipid metabolism of Pichia pastoris, which is widely used in biotechnology for expression of heterologous proteins. Here we describe identification of two P. pastoris phosphatidylserine decarboxylases (PSDs) encoded by genes homologous to PSD1 and PSD2 from Saccharomyces cerevisiae. Using P. pastoris psd1, and psd2, mutants we investigated the contribution of the respective gene products to phosphatidylethanolamine synthesis, membrane composition and cell growth. Deletion of PSD1 caused loss of PSD activity in mitochondria, a severe growth defect on minimal media and depletion of cellular and mitochondrial phosphatidylethanolamine levels. This defect could not be compensated by Psd2p, but by supplementation with ethanolamine, which is the substrate for the cytidine diphosphate (CDP),ethanolamine pathway, the third route of phosphatidylethanolamine synthesis in yeast. Fatty acid analysis showed selectivity of both Psd1p and Psd2p in vivo for the synthesis of unsaturated phosphatidylethanolamine species. Phosphatidylethanolamine species containing palmitic acid (16:0), however, were preferentially assembled into mitochondria. In summary, this study provides first insight into membrane manipulation of P. pastoris, which may serve as a useful method to modify cell biological properties of this microorganism for biotechnological purposes. [source]


    Cloning and characterization of Sapp2p, the second aspartic proteinase isoenzyme from Candida parapsilosis

    FEMS YEAST RESEARCH, Issue 7 2006
    Michaela Merkerová
    Abstract The human fungal pathogen Candida parapsilosis possesses at least three genes encoding secreted aspartic proteinases. Whereas the Sapp1p isoenzyme has already been biochemically characterized, the SAPP2 and SAPP3 gene products have not. The Sapp2p precursor, pro-Sapp2p, was therefore expressed in Escherichia coli and purified. Autoactivation of pro-Sapp2p in acidic conditions was inefficient and resulted in a protein extended by eight amino acids at the N-terminus (Sapp2p+8). The correct promature junction KR/SSPSS was cleaved by trypsin or by a membrane-bound Kex2-like proteinase from Candida parapsilosis. The mature Sapp2p obtained by the assisted activation was proteolytically active. Its activity was more than twofold higher than that of the self-processed protein species Sapp2p+8, as measured by the hemoglobin cleavage test. The substrate specificity of Sapp2p differs from that of Sapp1p. Peptides containing aromatic residues in the P1 and P1, positions are cleaved poorly by Sapp2p. A fluorogenic substrate was synthesized to facilitate further studies. [source]


    The Candida Genome Database: Facilitating research on Candida albicans molecular biology

    FEMS YEAST RESEARCH, Issue 5 2006
    Maria C. Costanzo
    Abstract The Candida Genome Database (CGD; http://www.candidagenome.org) is a resource for information about the Candida albicans genomic sequence and the molecular biology of its encoded gene products. CGD collects and organizes data from the biological literature concerning C. albicans, and provides tools for viewing, searching, analysing, and downloading these data. CGD also serves as an organizing centre for the C. albicans research community, providing a gene-name registry, contact information, and research community news. This article describes the information contained in CGD and how to access it, either from the perspective of a bench scientist interested in the function of one or a few genes, or from the perspective of a biologist or bioinformatician interpreting large-scale functional genomic datasets. [source]