Fitness Parameters (fitness + parameter)

Distribution by Scientific Domains
Distribution within Life Sciences


Selected Abstracts


Preference and performance of the hyperparasitoid Syrphophagus aphidivorus (Hymenoptera: Encyrtidae): fitness consequences of selecting hosts in live aphids or aphid mummies

ECOLOGICAL ENTOMOLOGY, Issue 6 2004
R. Buitenhuis
Abstract., 1.,Theoretical models predict that ovipositional decisions of parasitoid females should lead to the selection of the most profitable host for parasitoid development. Most parasitoid species have evolved specific adaptations to exploit a single host stage. However, females of the aphid hyperparasitoid Syrphophagous aphidivorus (Mayr) (Hymenoptera: Encyrtidae) display a unique and atypical oviposition behaviour by attacking either primary parasitoid larvae in live aphids, or parasitoid pupae in dead, mummified aphids. 2.,In the laboratory, the correlation between host suitability and host preference of S. aphidivorus on the host Aphidius nigripes Ashmead parasitising the aphid Macrosiphum euphorbiae (Thomas) was investigated. 3.,The relative suitability of the two host stages was determined by measuring hyperparasitoid fitness parameters (survival, development time, fecundity, sex ratio, and adult size of progeny), and calculating the intrinsic rate of population increase (rm). Host preference by S. aphidivorus females and the influence of aphid defence behaviour on host selection was also examined. 4.,Hyperparasitoid offspring performance was highest when developing from hosts in aphid mummies and females consistently preferred this host to hosts in parasitised aphids. Although aphid defensive behaviour may influence host selection, it was not a determining factor. Ecological and evolutionary processes that might have led to dual oviposition behaviour in S. aphidivorus are discussed. [source]


The relationship between host selection behaviour and offspring fitness in a koinobiont parasitoid

ECOLOGICAL ENTOMOLOGY, Issue 4 2000
Ana Rivero
Summary 1. When host quality varies, optimal foraging theory assumes that parasitic wasps select hosts in a manner that increases their individual fitness. In koinobiont parasitoids, where the hosts continue developing for a certain period of time after parasitisation, host selection may not reflect current host quality but may be based on an assessment of future growth rates and resources available for the developing larvae. 2. When presented with hosts of uniform quality, the koinobiont parasitoid Leptomastix dactylopii exhibits a characteristic host-selection behaviour: some hosts are accepted for oviposition on first encounter, while others are rejected several times before an egg is laid in them, a behaviour that is commonly associated with a changing host acceptance threshold during the course of a foraging bout. 3. The fitness of the offspring that emerged from hosts accepted immediately upon encounter was compared with the fitness of offspring emerged from hosts rejected several times before being accepted for oviposition. 4. The pattern of host acceptance and rejection was not related to any of the measured fitness parameters of the offspring emerging from these hosts (development time, size at emergence, sex ratio at emergence, and female offspring egg load). 5. While complex post facto adaptive explanations can be devised to explain the nature of such a time and energy consuming host selection process, it is suggested that physiological constraints on egg production or oviposition may provide an alternative, purely mechanistic, explanation for the results obtained. [source]


Effect of rice lines transformed with Bacillus thuringiensis toxin genes on the brown planthopper and its predator Cyrtorhinus lividipennis

ENTOMOLOGIA EXPERIMENTALIS ET APPLICATA, Issue 1 2002
Carmencita C. Bernal
Abstract Five transgenic rice lines, each containing an insecticidal toxin gene from Bacillus thuringiensis (Bt) under control of a different promoter, were tested for effects on two non-target insects: the brown planthopper, Nilaparvata lugens (Stål) (Homoptera: Delphacidae), and its predator Cyrtorhinus lividipennis (Hemiptera: Miridae). Bt toxin was detected by ELISA in the honeydew of N. lugens that fed on rice lines with the CaMV 35S and actin promoters. Nilaparvata lugens produced greater volumes of acidic honeydew (derived from xylem feeding) on all five Bt rice lines than on non-transgenic control lines. The amount of honeydew derived from phloem feeding did not differ between Bt and control lines. There were no differences between N. lugens reared on Bt and control lines in any of the five fitness parameters measured (survival to the adult stage, male and female weight, and male and female developmental time). There were no differences between C. lividipennis reared on N. lugens nymphs from Bt and control lines, in any of the three fitness parameters examined (survival to the adult stage and male and female developmental time). Our results indicate that N. lugens and its natural enemies will be exposed to Bt toxins from rice lines transformed with some Bt gene constructs, but that this exposure might not affect N. lugens and C. lividipennis fitness. [source]


Accessory gland secretory proteins in relation to fitness parameters of Drosophila ananassae and D. varians

ENTOMOLOGICAL RESEARCH, Issue 5 2010
Raghavendra B. HIREMANI
Abstract Developmental morphometry, qualitative and quantitative analysis of the accessory gland secretory proteins, fecundity and productivity in relation to protein ejected during subsequent (first to fourth-time) matings have been studied in Drosophila ananassae Doleschall and Drosophila varians Bock. In both species, size and secretion of accessory glands increases from 1 to 8 days and the stored secretion ejected from males to the female genital tract during subsequent mating varies. The maximum number of eggs and flies are produced from the females mated with bachelor males and it is a minimum when virgin females are mated with fourth-time mated males. Sodium dodecylsulfate,polyacrylamide gel electrophoresis analysis of accessory gland secretory protein patterns and their glycosylation differs in both the species. Correlation coefficient analysis between gland size and quantity of secretion, percentage of secretory protein transferred per mating, and eggs and flies that emerged showed a highly significant, positive relationship. Among different matings, the number of eggs laid and flies that emerged per female between subsequent (first to fourth-time) matings of males was found to be highly significant and the difference between fecundity and productivity between the two species was highly significant. [source]


Intraspecific seed trait variations and competition: passive or adaptive response?

FUNCTIONAL ECOLOGY, Issue 3 2009
Cyrille Violle
Summary 1The phenotype of offspring depends on the abiotic and biotic environment in which the parents developed. However, the direct effects of competition experienced by parent plants on single-seed traits are poorly documented despite their impact on plant fitness. 2We hypothesize that single-seed traits can differentially respond to the resource deficiencies of parent plants due to competition: seed quality may decrease as seed number does, magnifying the negative effects of competition for offspring (,passive response' hypothesis), or increase and then enhance offspring fitness to offset the reduction in offspring number (,adaptive response' hypothesis). Here we tested these hypotheses for four single-seed traits. We assessed the sensibility of their responses to changes in competition intensity due to species with different competitive effects and to contrasting soil nitrogen conditions. 3In a common-garden experiment, four single-seed traits related to fitness , seed mass, seed nitrogen concentration (SNC), germinability and the timing of germination , were measured on a phytometer species transplanted in 14 different neighbours grown in monoculture with and without soil nitrogen limitation. 4Under nitrogen-limiting conditions, the responses of SNC and of the timing of germination were passive and mainly related to the effects of neighbours on soil nitrogen availability, as shown by the increase in SNC with N-fixing neighbours. Within-individual seed mass variability decreased with increasing competition intensity, as an adaptive response to counterbalance the reduction in seed production. With nitrogen supplementation, competitors had no detectable effect on single-seed traits despite an overall increase in SNC and germination rate, confirming their nitrogen-dependent passive responses to competition. Germinability did not change among treatments. 5The impact of competition on single-seed traits depends on both phytometer trait identity and resource modulation by neighbours. The passive response of seed chemical composition to competitors may magnify the competitive effects on offspring. By contrast, the adaptive response of seed size variability may offset these competitive effects. As a consequence, experiments looking at the fitness consequences of competition should not only consider the effects on fitness parameters of a target plant but also on the offspring. [source]


Food preferences and the value of animal food for the carabid beetle Amara similata (Gyll.) (Col., Carabidae)

JOURNAL OF APPLIED ENTOMOLOGY, Issue 9-10 2005
S. Fawki
Abstract:, Several studies have shown that the mainly granivorous carabid beetles, e.g. Amara spp., include animal food in their diet to a considerable extent. We therefore hypothesized that the performance of these beetles would be enhanced by dietary mixing including both seeds and animal food. In order to test this, we conducted laboratory feeding experiments with adults and larvae of Amara similata. Both adults and larvae were subjected to different diet treatments including: seeds, houseflies, grasshoppers, earthworms, slugs and snails in pure and mixed diets. Larval survival, development time, pupal and teneral weights were used as indicators of food quality for the larvae. For the adult beetles, mass change was used as an indicator of food quality. We found seeds to be high-quality food, while all pure animal diets were of low quality for both adults and larvae. Animal foods added to the seed diet had both positive and negative effects. A mixed diet of all foods enhanced the mass gain of adults compared with the seed diet, but reduced larval performance dramatically. Earthworms and grasshoppers added to seeds increased the pupal and teneral weights, while reduced larval survival. Thus, A. similata is omnivorous with a mainly granivorous feeding habit. It may gain benefits on some fitness parameters and incur costs on others from preying or scavenging on animal food. Therefore, the overall fitness consequences of a mixed seed-animal diet are uncertain. [source]


Occurrence and effects of Nosema fumiferanae infections on adult spruce budworm caught above and within the forest canopy

AGRICULTURAL AND FOREST ENTOMOLOGY, Issue 4 2007
Eldon S. Eveleigh
Abstract 1,Nosema fumiferanae infections in populations of both sexes of spruce budworm Choristoneura fumiferana moths, collected live above the forest canopy (canopy moths), within the tree crown (crown moths) and in drop trays (dead moths), were examined over a 5-year period in New Brunswick, Canada. 2,The incidence of infection and of moderate,heavy infections in canopy and crown moths of both sexes increased concomitantly with moth eclosion, indicating that N. fumiferanae retards larval/pupal development, with infected moths, particularly those having higher disease loads, emerging later in the season. 3,Infection rates differed among canopy, crown, and dead female, but not male, moths. Canopy (i.e. emigrating) females had a lower incidence of infection, lower incidence of moderate,heavy infections, and had longer forewings and higher dry weights, than crown females. These results suggest that N. fumiferanae infections negatively affect aspects of female, but not male, flight performance. Regardless of infection, forewing length and dry weight of both canopy and crown females declined over the moth flight period, but infected females in both moth types were smaller than their uninfected counterparts. Forewing lengths and dry weights of moderately,heavily infected females were most severely affected. 4,Despite high annual infection rates in parents, only a small percentage of offspring (second-instar larvae) that established feeding sites each spring were infected, indicating that high rates of horizontal transmission occurred annually throughout the larval period. 5,The present study indicates that whether N. fumiferanae infections are a debilitating sublethal factor in spruce budworm populations depends more on the disease load than on the overall incidence of infection. The potential importance of N. fumiferanae infections on various fitness parameters related to host dispersal is discussed. [source]


Effects of CO2 and light on tree phytochemistry and insect performance

OIKOS, Issue 2 2000
Jep Agrell
Direct and interactive effects of CO2 and light on tree phytochemistry and insect fitness parameters were examined through experimental manipulations of plant growth conditions and performance of insect bioassays. Three species of deciduous trees (quaking aspen, Populus tremuloides; paper birch, Betula papyrifera; sugar maple, Acer saccharum) were grown under ambient (387±8 ,L/L) and elevated (696±2 ,L/L) levels of atmospheric CO2, with low and high light availability (375 and 855 ,mol×m,2×s,1 at solar noon). Effects on the population and individual performance of a generalist phytophagous insect, the white-marked tussock moth (Orgyia leucostigma) were evaluated. Caterpillars were reared on experimental trees for the duration of the larval stage, and complementary short-term (fourth instar) feeding trials were conducted with insects fed detached leaves. Phytochemical analyses demonstrated strong effects of both CO2 and light on all foliar nutritional variables (water, starch and nitrogen). For all species, enriched CO2 decreased water content and increased starch content, especially under high light conditions. High CO2 availability reduced levels of foliar nitrogen, but effects were species specific and most pronounced for high light aspen and birch. Analyses of secondary plant compounds revealed that levels of phenolic glycosides (salicortin and tremulacin) in aspen and condensed tannins in birch and maple were positively influenced by levels of both CO2 and light. In contrast, levels of condensed tannins in aspen were primarily affected by light, whereas levels of ellagitannins and gallotannins in maple responded to light and CO2, respectively. The long-term bioassays showed strong treatment effects on survival, development time, and pupal mass. In general, CO2 effects were pronounced in high light and decreased along the gradient aspen birch maple. For larvae reared on high light aspen, enriched CO2 resulted in 62% fewer survivors, with increased development time, and reduced pupal mass. For maple-fed insects, elevated CO2 levels had negative effects on survival and pupal mass in low light. For birch, the only negative CO2 effects were observed in high light, where female larvae showed prolonged development. Fourth instar feeding trials demonstrated that low food conversion efficiency reduced insect performance. Elevated levels of CO2 significantly reduced total consumption, especially by insects on high light aspen and low light maple. This research demonstrates that effects of CO2 on phytochemistry and insect performance can be strongly light-dependent, and that plant responses to these two environmental variables differ among species. Overall, increased CO2 availability appeared to increase the defensive capacity of early-successional species primarily under high light conditions, and of late-successional species under low light conditions. Due to the interactive effects of tree species, light, CO2, and herbivory, community composition of forests may change in the future. [source]