Fermentation Kinetics (fermentation + kinetics)

Distribution by Scientific Domains


Selected Abstracts


Combined Effect of Agitation/Aeration and Fed-Batch Strategy on Ubiquin- one-10 Production by Pseudomonas diminuta

CHEMICAL ENGINEERING & TECHNOLOGY (CET), Issue 6 2010
Mahesh V. Bule
Abstract The effects of aeration rate and agitation speed on ubiquinone-10 (CoQ10) submerged fermentation in a stirred-tank reactor using Pseudomonas diminuta NCIM 2865 were investigated. CoQ10 production, biomass formation, glycerol utilization, and volumetric mass transfer coefficient (kLa) were affected by both aeration and agitation. An agitation speed of 400,rpm and aeration rate of 0.5,vvm supported the maximum production (38.56,mg,L,1) of CoQ10 during batch fermentation. The fermentation run supporting maximum production had an kLa of 27.07,h,1 with the highest specific productivity and CoQ10 yield of 0.064,mg,g,1h,1 and 0.96,mg,g,1 glycerol, respectively. Fermentation kinetics performed under optimum aeration and agitation showed the growth-associated constant (a,=,5.067,mg,g,1) to be higher than the nongrowth-associated constant (,,=,0.0242,mg,g,1h,1). These results were successfully utilized for the development of fed-batch fermentation, which increased the CoQ10 production from 38.56,mg,L,1 to 42.85,mg,L,1. [source]


Evaluation of Various Unstructured Kinetic Models for the Production of Protease by Bacillus sphaericus,MTTC511

ENGINEERING IN LIFE SCIENCES (ELECTRONIC), Issue 2 2008
A. Rajendran
Abstract Bacillus sphaericus,MTCC511 was used for the production of protease in submerged batch fermentation. Maximum protease activity of 1010,U/L was obtained during a fermentation period of 24,h under optimized conditions of 30,C in a medium with an initial pH of 7 and at a shaking rate of 120,rpm. The maximum biomass obtained in the batch fermentation was 2.55,g/L after 16,h. Various unstructured models were analyzed to simulate the experimental values of microbial growth, protease activity and substrate concentration. The unstructured models, i.e. the Monod model for microbial growth, the Monod incorporated Luedeking-Piret model for the production of protease and the Monod-incorporated modified Luedeking-Piret model for the utilization of substrate were capable of predicting the fermentation profile with high coefficient of determination (R2) values of 0.9967, 0.9402 and 0.9729, respectively. The results indicated that the unstructured models were able to describe the fermentation kinetics more effectively. [source]


Discrepancy in glucose and fructose utilisation during fermentation by Saccharomyces cerevisiae wine yeast strains

FEMS YEAST RESEARCH, Issue 7 2004
N.J. Berthels
Abstract While unfermented grape must contains approximately equal amounts of the two hexoses glucose and fructose, wine producers worldwide often have to contend with high residual fructose levels (>2 g l,1) that may account for undesirable sweetness in finished dry wine. Here, we investigate the fermentation kinetics of glucose and fructose and the influence of certain environmental parameters on hexose utilisation by wine yeast. Seventeen Saccharomyces cerevisiae strains, including commercial wine yeast strains, were evaluated in laboratory-scale wine fermentations using natural Colombard grape must that contained similar amounts of glucose and fructose (approximately 110 g l,1 each). All strains showed preference for glucose, but to varying degrees. The discrepancy between glucose and fructose utilisation increased during the course of fermentation in a strain-dependent manner. We ranked the S. cerevisiae strains according to their rate of increase in GF discrepancy and we showed that this rate of increase is not correlated with the fermentation capacity of the strains. We also investigated the effect of ethanol and nitrogen addition on hexose utilisation during wine fermentation in both natural and synthetic grape must. Addition of ethanol had a stronger inhibitory effect on fructose than on glucose utilisation. Supplementation of must with assimilable nitrogen stimulated fructose utilisation more than glucose utilisation. These results show that the discrepancy between glucose and fructose utilisation during fermentation is not a fixed parameter but is dependent on the inherent properties of the yeast strain and on the external conditions. [source]


Raw potato starch and short-chain fructo-oligosaccharides affect the composition and metabolic activity of rat intestinal microbiota differently depending on the caecocolonic segment involved

JOURNAL OF APPLIED MICROBIOLOGY, Issue 2 2003
G.M. Le Blay
Abstract Aims:In vitro studies have suggested that fructo-oligosaccharides (FOS) and resistant starch (two fermentable non-digestible carbohydrates) display different fermentation kinetics. This study investigated whether these substrates affect the metabolic activity and bacterial composition of the intestinal microflora differently depending on the caecocolonic segment involved. Methods and Results: Eighteen rats were fed a low-fibre diet (Basal) or the same diet containing raw potato starch (RPS) (9%) or short-chain FOS (9%) for 14 days. Changes in wet-content weights, bacterial populations and metabolites were investigated in the caecum, proximal and distal colon and faeces. Both substrates exerted a prebiotic effect compared with the Basal diet. However, FOS increased lactic acid-producing bacteria (LAPB) throughout the caecocolon and in faeces, whereas the effect of RPS was limited to the caecum and proximal colon. As compared with RPS, FOS doubled the pool of caecal fermentation products, while the situation was just the opposite distally. This difference was mainly because of the anatomical distribution of lactate, which accumulated in the caecum with FOS and in the distal colon with RPS. Faeces reflected these impacts only partly, showing the prebiotic effect of FOS and the metabolite increase induced by RPS. Conclusions: This study demonstrates that FOS and RPS exert complementary caecocolonic effects. Significance and Impact of the study: The RPS and FOS combined ingestion could be beneficial by providing health-promoting effects throughout the caecocolon. [source]


Production of L(+)-lactic acid from glucose and starch by immobilized cells of Rhizopus oryzae in a rotating fibrous bed bioreactor

BIOTECHNOLOGY & BIOENGINEERING, Issue 1 2002
Abdullatif Tay
Abstract A rotating fibrous-bed bioreactor (RFB) was developed for fermentation to produce L(+)-lactic acid from glucose and cornstarch by Rhizopus oryzae. Fungal mycelia were immobilized on cotton cloth in the RFB for a prolonged period to study the fermentation kinetics and process stability. The pH and dissolved oxygen concentration (DO) were found to have significant effects on lactic acid productivity and yield, with pH 6 and 90% DO being the optimal conditions. A high lactic acid yield of 90% (w/w) and productivity of 2.5 g/Lh (467 g/hm2) was obtained from glucose in fed-batch fermentation. When cornstarch was used as the substrate, the lactic acid yield was close to 100% (w/w) and the productivity was 1.65 g/Lh (300 g/hm2). The highest concentration of lactic acid achieved in these fed-batch fermentations was 127 g/L. The immobilized-cells fermentation in the RFB gave a virtually cell-free fermentation broth and provided many advantages over conventional fermentation processes, especially those with freely suspended fungal cells. Without immobilization with the cotton cloth, mycelia grew everywhere in the fermentor and caused serious problems in reactor control and operation and consequently the fermentation was poor in lactic acid production. Oxygen transfer in the RFB was also studied and the volumetric oxygen transfer coefficients under various aeration and agitation conditions were determined and then used to estimate the oxygen transfer rate and uptake rate during the fermentation. The results showed that the oxygen uptake rate increased with increasing DO, indicating that oxygen transfer was limited by the diffusion inside the mycelial layer. 2002 Wiley Periodicals, Inc. Biotechnol Bioeng 80: 1,12, 2002. [source]


Effects of glucose and nitrogen source concentration on batch fermentation kinetics of Lactococcus lactis under hemin-stimulated respirative condition

BIOTECHNOLOGY PROGRESS, Issue 4 2008
Azher Razvi
Abstract Analytical solutions to the ordinary differential equations governing the kinetics of cell growth, substrate utilization, and product formation of batch fermentation processes were derived and used to study the kinetics of the hemin-stimulated respiratory cultivation of Lactococcus lactis at varied initial glucose concentrations and nitrogen source concentrations. Studies revealed that initial glucose concentration varying in the range of 60 to 90 g/L had no significant substrate inhibitive effect. Furthermore, elevating the concentration of complex nitrogen sources while maintaining glucose concentration at 60% led to a high final biomass concentration of 6.6 g/L, substantially higher than that obtained with the basic medium, which was 4.1 g/L. [source]