Distribution by Scientific Domains
Distribution within Polymers and Materials Science

Terms modified by Fe3O4

  • fe3o4 Nanoparticle
  • fe3o4 nanoparticle
  • fe3o4 particle

  • Selected Abstracts

    A study of copper recovery from copper-contaminated sludge with ferrite and selective leaching processes

    S.H. Hu
    Abstract The purpose of this study was to develop an effective resource recovery and leached residue stabilization process for copper-contaminated sludge. To this end, a treatment procedure utilizing ferrite and selective leaching processes was developed. The XRD examination of ferrite complex revealed the crystalline phases to be mainly Fe3O4, CuO, and 6CuO·Cu2O. A selective leaching process was followed to recover the copper content of the ferrite complex. To promote the dissolution percentage of copper and repress that of iron, additional 0.5 N sulfuric acid was added at intervals to the suspension in the second step of the selective leaching process. The purpose of this operation was to return the suspension pH back to 3 to promote the dissolution of copper oxide and repress the dissolution of iron. Finally, the heavy metal (i.e., Cu, Pb, Cr, and Cd) dissolution of the above residue was examined with toxicity characteristic leaching procedure (TCLP) testing and all met the regulatory standard. © 2007 American Institute of Chemical Engineers Environ Prog 26:104,112, 2007 [source]

    The Thermal Decomposition of Three Magnetic Acetates at Their Autogenic Pressure Yields Different Products.


    Abstract We report on the one-stage, reproducible, solvent-free, competent and straightforward approach for the synthesis of fullerene-like Ni@C, Co@C, and Fe3O4@C core-shell nanostructures that can be scaled up. The single precursor reactions of low cost acetates of Fe, Co and Ni are separately conducted at a relatively low temperature (700 °C) in a closed Swagelok reactor, as compared to other methods for the formation of graphitic layers. It is worth mentioning that although identical reaction parameters are employed, using the three acetate precursors, the graphitic carbon is coated on nanosized metallic Ni and Co cores, while Fe tends to form Fe3O4, maintaining the same core-shell morphology. The systematic morphological, compositional, structural characterization and the room temperature magnetic susceptibility measurements of the as-made particles are carried out on a vibrating sample magnetometer. The plausible mechanism is based on the comparison between the dissociation products of three acetate precursors, their obtained experimental data, and calculations on the enthalpy and free energy changes.(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2007) [source]

    Facile Functionalization and Phase Reduction Route of Magnetic Iron Oxide Nanoparticles for Conjugation of Matrix Metalloproteinase,

    Dan Li
    Abstract A protocol for the simultaneous functionalization and phase reduction route of iron oxide magnetic nanoparticles (MNPs) and its further bioconjugation is presented. It was found that surface functionalization of maghemite (,-Fe2O3) nanoparticles with mercaptopropyltrimethoxysilane (MPTMS) under anoxic environment at above 80,°C promotes in situ conversion to magnetite (Fe3O4). Full conversion to Fe3O4, as probed by Mössbauer spectroscopy, with accompanied increase in the composite saturation magnetization, was achieved at 120,°C. By controlling the MPTMS concentration, the resultant silane-MNPs morphology can be tuned from having homogeneous thin layer (<1,nm) to thick continuous silane with embedded MNP multicores. Likewise the amount of surface distal thiol moieties was dependent on the silanization conditions. The density of distal thiols (i.e., amount of thiol per surface area) and resultant aggregate size have direct impact on the attachment, as well as the activity and reusability of the conjugated matrix metalloproteinase (MMP-2, using sulfo-SMCC as crosslinker). The work has important implication to the field of magneto-chemotherapeutics, where spatial control of conjugated active biomolecules under magnetic field and T2 -weighted MRI contrast can be achieved simultaneously. [source]

    Manganese in biogenic magnetite crystals from magnetotactic bacteria

    Carolina N. Keim
    Abstract Magnetotactic bacteria produce either magnetite (Fe3O4) or greigite (Fe3S4) crystals in cytoplasmic organelles called magnetosomes. Whereas greigite magnetosomes can contain up to 10 atom% copper, magnetite produced by magnetotactic bacteria was considered chemically pure for a long time and this characteristic was used to distinguish between biogenic and abiogenic crystals. Recently, it was shown that magnetosomes containing cobalt could be produced by three strains of Magnetospirillum. Here we show that magnetite crystals produced by uncultured magnetotactic bacteria can incorporate manganese up to 2.8 atom% of the total metal content (Fe+Mn) when manganese chloride is added to microcosms. Thus, chemical purity can no longer be taken as a strict prerequisite to consider magnetite crystals to be of biogenic origin. [source]

    Functionalization Strategies for Protease Immobilization on Magnetic Nanoparticles

    Dan Li
    Abstract A comprehensive study on the general functionalization strategies for magnetic nanoparticles (MNPs) is presented in this work. Using well-established techniques as well as modified protocols, the wide range of functional moieties grafted on ,-Fe2O3 (maghemite) nanosurfaces include those of amine, aldehyde, carboxylic, epoxy, mercapto, and maleimide ends. Among the modified protocols are the one-step water-catalyzed silanization with mercaptopropyltrimethoxysilane, resulting in dense distal thiols, and the direct functionalization with a heterogeneous bifunctional linker N -[p-maleimidophenyl]isocynanate (PMPI). The former results in a protective Stöber type coating while simultaneously reducing the iron oxide core to magnetite (Fe3O4). The conjugation of trypsin, hereby chosen as model biomolecule, onto the differently functionalized MNPs is further demonstrated and assessed based on its activity, kinetics, and thermo-/long-term stability as well as reusability. Besides aqueous stability and ease in recovery by magnetic separation, the immobilized trypsin on MNPs offers superior protease durability and reusability, without compromising the substrate specificity and sequence coverage of free trypsin. The MNP-based proteases can be used as valuable carriers in proteomics and miniaturized total analysis devices. The applicability of the functional surfaces devised in the current study is also relevant for the conjugation of other biomolecules beyond trypsin. [source]

    Monodisperse Polymer Capsules: Tailoring Size, Shell Thickness, and Hydrophobic Cargo Loading via Emulsion Templating

    Jiwei Cui
    Abstract The preparation of monodisperse polymer (polydopamine, PDA) capsules by a one-step interfacial polymerization of dopamine onto dimethyldiethoxysilane (DMDES) emulsion droplets and removal of the DMDES templates with ethanol is reported. The diameters of the PDA capsules can be tailored from 400,nm to 2.4,µm by varying either the DMDES emulsion condensation time or the emulsion concentration used for templating. Further, capsules with defined nanometer-scale shell thicknesses (ranging from ,10 to 30,nm) can be prepared by adjusting the emulsion concentration. This shell thickness can be increased by repeated interfacial polymerization of dopamine, with three cycles yielding capsules with a shell thickness of up to 140,nm (for a 0.6% v/v suspension). Functional substances, such as organically stabilized magnetic (Fe3O4) nanoparticles, quantum dots (CdSe/CdS), and hydrophobic drugs (thiocoraline), can be preloaded in the emulsion droplets, and following PDA coating and DMDES removal, these materials remain encapsulated in the polymer capsules. All of the unloaded and loaded PDA capsules are monodisperse and do not aggregate. This work provides new avenues for the preparation of polymer capsules with defined size and shell thickness and for the encapsulation of a range of hydrophobic substances. [source]

    Flame-retardant action of red phosphorus/magnesium oxide and red phosphorus/iron oxide compositions in recycled PET

    FIRE AND MATERIALS, Issue 5 2006
    F. Laoutid
    Abstract Red phosphorus was combined with metallic oxides Fe2O3 and MgO to improve the fire properties of recycled PET. Both Fe2O3 and MgO act as co-synergist agents at a total loading of 5 wt%. The analysis by diffraction X of the char formed during combustion shows that transformation of Fe2O3 to Fe3O4 occurs. Fe2O3 favours the oxidation and improves the effectiveness of red phosphorus. It is suggested that MgO interacts with acidic end groups of PET and forms a thermal stable residue. The thermal decomposition of recycled PET containing red phosphorus combined with Fe and Mg oxides was studied by thermal analysis and leads to an increase in char formation. While the incorporation of Fe2O3 in this ternary blend maintains the mechanical properties of PET, the reactivity of MgO leads to a brittle material. The use of reinforcements (talc and glass fibres) to mechanically stabilize the char formed during combustion of ternary blend with Fe2O3 entails a further decrease in heat release rate, nevertheless impact resistance of the material decreases dramatically. Copyright © 2005 John Wiley & Sons, Ltd. [source]

    Synthesis of PEOlated Fe3O4@SiO2 Nanoparticles via Bioinspired Silification for Magnetic Resonance Imaging

    Happy Tan
    Abstract Inspired by the biosilification process, a highly benign synthesis strategy is successfully developed to synthesize PEOlated Fe3O4@SiO2 nanoparticles (PEOFSN) at room temperature and near-neutral pH. The success of such a strategy lies in the simultaneous encapsulation of Fe3O4 nanocrystals and silica precursors into the core of PEO-based polymeric micelles. The encapsulation results in the formation of a silica shell being confined to the interface between the core and corona of the Fe3O4 -nanocrystal-loaded polymeric micelles. Consequently, the surface of the Fe3O4@SiO2 nanoparticle is intrinsically covered by a layer of free PEO chains, which enable the PEOFSN to be colloidally stable not only at room temperature, but also upon incubation in the presence of proteins under physiological conditions. In addition, the silica shell formation does not cause any detrimental effects to the encapsulated Fe3O4 nanocrystals with respect to their size, morphology, crystallinity, and magnetic properties, as shown by their physicochemical behavior. The PEOFSN are shown to be good candidates for magnetic resonance imaging (MRI) contrast agents as demonstrated by the high r2/r1 ratio with long-term stability under high magnetic field, as well as the lack of cytotoxicity. [source]

    Nanoshells with Targeted Simultaneous Enhancement of Magnetic and Optical Imaging and Photothermal Therapeutic Response

    Rizia Bardhan
    Abstract Integrating multiple functionalities into individual nanoscale complexes is of tremendous importance in biomedicine, expanding the capabilities of nanoscale structures to perform multiple parallel tasks. Here, the ability to enhance two different imaging technologies simultaneously,fluorescence optical imaging and magnetic resonance imaging,with antibody targeting and photothermal therapeutic actuation is combined all within the same nanoshell-based complex. The nanocomplexes are constructed by coating a gold nanoshell with a silica epilayer doped with Fe3O4 and the fluorophore ICG, which results in a high T2 relaxivity (390,mM,1,s,1) and 45× fluorescence enhancement of ICG. Bioconjugate nanocomplexes target HER2+ cells and induce photothermal cell death upon near-IR illumination. [source]

    Layer-By-Layer Dendritic Growth of Hyperbranched Thin Films for Surface Sol,Gel Syntheses of Conformal, Functional, Nanocrystalline Oxide Coatings on Complex 3D (Bio)silica Templates

    Guojie Wang
    Abstract Here, a straightforward and general method for the rapid dendritic amplification of accessible surface functional groups on hydroxylated surfaces is described, with focus on its application to 3D biomineral surfaces. Reaction of hydroxyl-bearing silica surfaces with an aminosilane, followed by alternating exposure to a dipentaerythritol-derived polyacrylate solution and a polyamine solution, allows the rapid, layer-by-layer (LBL) build-up of hyperbranched polyamine/polyacrylate thin films. Characterization of such LBL-grown thin films by AFM, ellipsometry, XPS, and contact angle analyses reveals a stepwise and spatially homogeneous increase in film thickness with the number of applied layers. UV,Vis absorption analyses after fluorescein isothiocyanate labeling indicate that significant amine amplification is achieved after the deposition of only 2 layers with saturation achieved after 3,5 layers. Use of this thin-film surface amplification technique for hydroxyl-enrichment of biosilica templates facilitates the conformal surface sol,gel deposition of iron oxide that, upon controlled thermal treatment, is converted into a nanocrystalline (,9.5,nm) magnetite (Fe3O4) coating. The specific adsorption of arsenic onto such magnetite-coated frustules from flowing, arsenic-bearing aqueous solutions is significantly higher than for commercial magnetite nanoparticles (,50,nm in diameter). [source]

    Magnetic Multi-Functional Nano Composites for Environmental Applications

    Jie Dong
    Abstract A novel concept is proposed to synthesize a new class of composites featuring magnetic, molecular sieve and metallic nanoparticle properties. These multi-functional materials have potential applications as recyclable catalysts, disinfectants and sorbents. The magnetic property enables effective separation of the spent composites from complex multiphase systems for regeneration and recycle, safe disposal of the waste and/or recovery of loaded valuable species. The zeolite molecular sieve provides a matrix which supports a remarkably new, simple, efficient and economical method to make stable, supported silver nanoparticles by silver ion exchange and controlled thermal reduction. The silver nanoparticles generated in this way have excellent properties such as high reactivity and good thermal stability without aggregation, which act as nano reactors for desired functionality in a wide range of applications. Magnetic component (Fe3O4), molecular sieve matrix (zeolite) and silver nanoparticles generated by ion exchange followed by controlled reduction, together form this unique novel composite with designed functions. It represents a practically operational, economical, sustainable and environmentally friendly new advanced functional material. This paper focuses on the novel synthesis and characterization of the composite, with an example of applications as sorbents for the removal of vapor-phase mercury from the flue gas of coal-fired power plants. [source]

    Ferroelectric Switching in Multiferroic Magnetite (Fe3O4) Thin Films

    ADVANCED MATERIALS, Issue 44 2009
    Marin Alexe
    Real-time ferroelectric polarization switching in magnetite epitaxial thin films is reported, proving that magnetite is not only historically the first material showing magnetism and correlated electron properties, but also that it is ferroelectric with a value of the ferroelectric polarization approaching that of well-known ferroelectric materials such as BaTiO3. [source]

    Growth of magnetite epitaxial thin films by gas flow sputtering and characterization by FMR

    Hiroshi Sakuma Member
    Abstract The growth of magnetite (Fe3O4) epitaxial thin films on MgO substrates were studied by using gas flow sputtering (GFS). Reflection high-energy electron diffraction (RHEED) and atomic force microscopy showed that the surfaces of the films obtained at a substrate temperature Ts of 300 °C and oxygen flow rates FO2 of 0.12 , 0.18 sccm are fairly flat for the film thickness of about 200 nm. The saturation magnetization and resistivity were close to the reported values of Fe3O4 for Ts= 300°C and FO2 = 0.12,0.20sccm. The films obtained at Ts= 300°C and FO2=0.16 and 0.18 sccm showed Verwey transition, which is persuasive evidence of the formation of Fe3O4. The epitaxial relationship of Fe3O4(100)//MgO(100) and Fe3O4[100]//MgO[100] was confirmed by using ferromagnetic resonance (FMR), and the anisotropy constants and magnetization were obtained by the fitting of resonance-field versus applied-field angle curves. © 2007 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc. [source]

    Fluorescent Polystyrene,Fe3O4 Composite Nanospheres for In Vivo Imaging and Hyperthermia

    ADVANCED MATERIALS, Issue 21 2009
    Donglu Shi
    Quantum dots (QDs) are immobilized on the surfaces of magnetic Fe3O4 -composite nanospheres (MNSs, see figure). The QDs exhibit intense visible-light emission in fluorescence spectroscopy and successfully facilitate, for the first time, in vivo soft-tissue imaging in live mice. The Fe3O4 nanoparticles respond to an external magnetic field by increasing the temperature of the surrounding environment (i.e., hyperthermia), which can be used therapeutically. [source]

    Use of Enzymes for the Processing of Biomaterials

    Hidero Unuma
    Ceramic/polymer composites and hollow ceramic microspheres are receiving attention as biomaterials as a bone/tissue substitute and cancer remedy. This article describes the advantages of the use of enzymes as "controllable precipitant supplier" in the processing of such biomaterials. It has been demonstrated that hydroxyapatite (HA)/polymer composites and hollow microspheres of Y2O3, Fe3O4, and HA may be fabricated in a shorter time and using a simpler operation. [source]

    Magnetic and Electrical Characterizations of Half-Metallic Fe3O4 Nanowires,

    ADVANCED MATERIALS, Issue 17 2007
    M.-T. Chang
    The magnetic properties of magnetite (Fe3O4) nanowires are investigated by means of electron holography, which deduces the magnetic information from the phase shift of electrons. The magnetic flux is parallel to the longitudinal axis of the nanowires (see figure). Observations on the magnetization distribution reveal the possibility of regulating the spin current with the half-metallic nanowires, owing to the controlled magnetization distribution in the 1D form. [source]

    Study of ferrite ferrofluids by small-angle scattering of polarized neutrons

    Massimo Bonini
    Nanoparticles consisting of a magnetic core (Fe3O4, CoFe2O4 and CuFe2O4) and a hydrophobic shell were prepared by chemical co-precipitation of the inorganic cores and by subsequently modifying the surface with dodecanoic acid. The nanoparticles were then dispersed in cyclohexane to form stable ferrofluids. These dispersions were investigated by small-angle scattering of polarized neutrons and the data were interpreted according to a `pearl-necklace' model, opportunely modified to account for the core,shell structure of the particles. Results of the fitting show that the particles consist of a magnetic core with a mean radius of 40,50,Å and an organic shell with a thickness of 7,8,Å. These nanoparticles assemble in fractal aggregates when a magnetic field is applied. [source]

    Spectral characterization of lysozyme adsorption on dye-affinity beads

    Nilgün Basar
    Abstract Cibacron Blue F3GA-attached magnetic poly(2-hydroxyethyl methacrylate) [mPHEMA] beads were prepared by suspension polymerization of HEMA in the presence of magnetite (Fe3O4) nanopowder. Average diameter size of the mPHEMA beads was 150,200 ,m. The characteristic functional groups of Cibacron Blue F3GA-attached mPHEMA beads were analyzed by Fourier transform infrared spectrometer (FTIR) and Raman scattering spectrometer. The lysozyme adsorption and desorption characteristics of Cibacron Blue F3GA-attached mPHEMA beads were also investigated using FTIR and Raman spectroscopic techniques. When the Raman spectrum of lysozyme adsorbed mPHEMA is evaluated characteristic Amide-I band appears at 1657 cm,1. The intensity of this band decreases in the spectrum of lysozyme desorbed mPHEMA sample. When the characteristic bands of lysozyme adsorbed and desorbed mPHEMA samples are compared, the band intensities of desorbed sample are lower than those of lysozyme adsorbed sample except for the band appearing at 656 cm,1 (Tyr vCS). © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 [source]

    Comparative evaluation of heating ability and biocompatibility of different ferrite-based magnetic fluids for hyperthermia application

    Pallab Pradhan
    Abstract In this study, lauric acid-coated, superparamagnetic, nanoparticle-based magnetic fluids of different ferrites (Fe3O4, MnFe2O4, and CoFe2O4) were prepared and compared in terms of heating ability and biocompatibility to evaluate the feasibility of use in hyperthermia treatment of cancer. All the magnetic fluids prepared had particles of average sizes 9,11 nm. Heating ability of these magnetic fluids was evaluated by calorimetric measurement of specific absorption rate (SAR) at 300 kHz frequency and 15 kA/m field. Fe3O4 and MnFe2O4 showed higher SAR (120 and 97 W/g of ferrite, respectively) than CoFe2O4 (37 W/g of ferrite). In vitro study on BHK 21 cell lines showed dose-dependent cell viability for all the magnetic fluids. Threshold-biocompatible ferrite concentration for all the magnetic fluids was 0.1 mg/mL. Above 0.2 mg/mL, CoFe2O4 was more toxic than the other magnetic fluids. On intravenous injection of different doses (50, 200, and 400 mg/kg body weight) of magnetic fluids in mice, no significant changes in hematological and biochemical parameters were observed for Fe3O4 and MnFe2O4. With CoFe2O4, an increase in SGPT levels at a dose rate of 400 mg/kg body weight was observed, indicating its mild hepatotoxic effect. However, histology of different vital organs showed no pathological changes for all the three magnetic fluids. Further, long term in vivo evaluation of biocompatibility of the lauric acid-coated ferrites is warranted. This study shows that lauric acid-coated, superparamagnetic Fe3O4 and MnFe2O4 may be used for hyperthermia treatment and are to be preferred over CoFe2O4. © 2006 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2006 [source]

    Magnetic Fingerprint Powder from a Mineral Indigenous to Thailand

    Thatsanee Thonglon B.Sc.
    Abstract:, A study was conducted to investigate whether natural magnetite (Fe3O4), which is an abundant mineral in Thailand, could be used as a magnetic powder in the detection of latent fingerprints. Because of the presence of impurities, powdered magnetite is only weakly attracted by a magnet and cannot be used as a magnetic fingerprint powder by itself. Mixing a small amount of magnetite powder with nickel powder greatly enhances the magnetic attraction. A mixture of magnetite powder and nickel powder in a mass ratio of approximately 1:100 was found to be suitable for use as a magnetic fingerprint powder. Fingerprints developed using the magnetite/nickel mixture on nonporous surfaces were found to exhibit good adherence and clarity. Using an automated fingerprint identification system, the number of minutiae detected in fingerprints developed by using the prepared powder on nonporous surfaces was found to be comparable to those detected in fingerprints developed by using a commercial black magnetic powder. The cost is lowered by more than 60%. [source]

    The kinetics of the reduction of iron oxide by carbon monoxide mixed with carbon dioxide

    AICHE JOURNAL, Issue 4 2010
    C. D. Bohn
    Abstract Results are reported for the repeated reduction of iron oxide particles, 300,425 ,m diameter, by a mixture of CO, CO2, and N2 in a fluidized bed of 20 mm internal diameter. The conclusions were as follows: (1) Reduction of either Fe2O3 to Fe3O4 or of Fe3O4 to Fe0.947O is first-order in CO. (2) With the particle sizes used, the rates of the reduction reactions are controlled by intrinsic chemical kinetics. Activation energies and pre-exponential factors are reported. (3) The first cycle gave anomalous results, but (a) the rate of reduction of Fe2O3 to Fe3O4 remained constant over cycles 2,10; (b) the rate of reduction of Fe3O4 to Fe0.947O declined by 60,85% over cycles 2,10. (4) The rates of reduction declined with solids conversion down to zero at 80% conversion. The rates were incorporated into a conventional model of a fixed bed, which was used to predict, satisfactorily, the reduction behavior of iron oxide. © 2009 American Institute of Chemical Engineers AIChE J, 2010 [source]

    Light FCC gasoline olefin oligomerization over a magnetic NiSo4/,-Al2o3 catalyst in a magnetically stabilized bed

    AICHE JOURNAL, Issue 3 2009
    Ying Peng
    Abstract Magnetic NiSO4/,-Al2O3 catalysts were prepared by impregnating NiSO4 solutions onto the ,-Al2O3 support containing a magnetic material of Fe3O4. Characterization by XRD, NH3 -TPD, and thermal analysis showed that the magnetic NiSO4/,-Al2O3 catalyst with a nickel content of 7.0% by weight had a monolayer dispersion of NiSO4 and the largest number of moderate strength acid sites, and a high specific saturation magnetization. The magnetic catalyst was evaluated for light FCC gasoline olefin oligomerization in both fixed-bed and magnetically stabilized bed (MSB) reactors. Comparing with that in the fixed-bed reactor, the optimal reaction temperature in the MSB lowered to 443 K, and its space velocity ranged broadly from 2.0 to 6.0 h,1. The sulfur-free diesel distillate produced by operation of the MSB for 100 h had higher cetane number and good low-temperature flow property, which illuminates a promising application of the MSB to manufacture clean diesel fuels with high productivity and flexibility. © 2009 American Institute of Chemical Engineers AIChE J, 2009 [source]

    Facile one-step synthesis of electromagnetic functionalized polypyrrole/Fe3O4 nanotubes via a self-assembly process

    Wei-Dong Zhang
    Abstract This article reports a simple self-assembly process for facile one-step synthesis of novel electromagnetic functionalized polypyrrole (PPy)/Fe3O4 composite nanotubes using p -toluenesulfonic acid (p -TSA) as the dopant and FeCl3 as the oxidant. The key trick of the present method is to use FeCl3 as the oxidant for both PPy and Fe3O4 in the same time to synthesize PPy/Fe3O4 composite nanotubes in one-step. This facile one-step method is much simpler than the conventional approach using the Fe3O4 nanoparticles as the additives. Compared to the similar composites synthesized using the conventional method, the as-prepared PPy- p -TSA/Fe3O4 composite nanotubes using the facile one-step self-assembly process show much higher room-temperature conductivity. Moreover, the composite nanotubes display interesting ferromagnetic behavior. The electrical properties of the PPy- p -TSA/Fe3O4 composite nanotubes are dominated by the amount of FeCl3 while their magnetic properties are controlled by the amount of FeCl2. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 320,326, 2010 [source]

    Spray Pyrolysis of Fe3O4,BaTiO3 Composite Particles

    Tomoyuki Adachi
    Fe3O4,BaTiO3 composite particles were successfully prepared by ultrasonic spray pyrolysis. A mixture of iron(III) nitrate, barium acetate and titanium tetrachloride aqueous solution were atomized into the mist, and the mist was dried and pyrolyzed in N2 (90%) and H2 (10%) atmosphere. Fe3O4,BaTiO3 composite particle was obtained between 900° and 950°C while the coexistence of FeO was detected at 1000°C. Transmission electron microscope observation revealed that the composite particle is consisted of nanocrystalline having primary particle size of 35 nm. Lattice parameter of the Fe3O4,BaTiO3 nanocomposite particle was 0.8404 nm that is larger than that of pure Fe3O4. Coercivity of the nanocomposite particle (390 Oe) was much larger than that of pure Fe3O4 (140 Oe). These results suggest that slight diffusion of Ba into Fe3O4 occurred. [source]

    Synthesis and Characterization of Magnetic Nanocontainers

    Christos Tapeinos
    Magnetic hollow spheres were synthesized through a two-step process and were evaluated by Fourier transform infrared spectroscopy, scanning electron microscopy, super quantum interference device, vibrating sample magnetometry and Mössbauer spectroscopy methods. First, polystyrene spheres (PS) were produced using emulsion polymerization. Second, the PS spheres were coated via the sol,gel method to form an iron oxide layer. The size of the PS spheres was controlled by the concentration of the monomer (styrene), the initiator (potassium persulfate), and the emulsifier (sodium dodecylsulfate). The sol,gel coatings were prepared by controlled hydrolysis of aqueous solutions of FeCl3 in the presence of PS latex, polyvinylpyrrolidone, and hydrochloric acid. The composite was treated in air to burn off the PS latex. Temperature treatments were optimized after extensive differential thermal analysis and thermo gravimetric analysis characterization of the samples. Treatments under hydrogen atmosphere at various temperatures gave control over the formation and extend of magnetic phases in the nanocontainers such as a Fe, hematite (Fe2O3), and magnetite (Fe3O4). The size of the containers ranged between 300 and 400 nm. [source]

    Microwave-Assisted Synthesis of Fine Particle Oxides Employing Wet Redox Mixtures

    Solomon Sundar Manoharan
    Interaction of electromagnetic radiation with a physical mixture of metal nitrates and amides/hydrazides is observed to initiate high-temperature reactions, useful for realizing several high-temperature ceramic materials. A judicious choice of such redox mixtures undergoes exothermic reactions when they couple with microwave radiation. The coupling of electromagnetic radiation with metal salts and amides/hydrazides depends on the dielectric properties of the individual components in the reaction mixture. The approach has been used to prepare ,-Fe2O3, Fe3O4, MgCr2O4, ,-CaCr2O4, and La0.7Ba0.3MnO3. [source]

    The tribological properties of (quinazolin-4-ones)-3-methyl-dibutyl borate as a novel additive in liquid paraffin

    LUBRICATION SCIENCE, Issue 6-7 2010
    Ping Ouyang
    Abstract An organic compound containing N, B and O was synthesised by reacting 3-hydroxymethyl-quinazolin-4-ones and formalin in 1, 4-dioxane solution, the resulting product then being reacted with butanol and boric acid in dimethylbenzene solution. The tribological performance of the novel compound when added to liquid paraffin was evaluated using a four-ball tester and a ring-on-block machine. The relationship between performance and concentration was analysed, and the results showed that the compound possesses good anti-wear, friction-reducing and load-carrying properties. The mechanism of action of the additive was investigated using X-ray photoelectron spectroscopy. Surface analysis indicated the formation of a protective film containing borate, Fe3O4, and an organonitrogen compound. This protective film formed during sliding processes contributes to the increase in wear resistance. Copyright © 2010 John Wiley & Sons, Ltd. [source]

    Synthesis of Folic Acid Functionalized PLLA- b -PPEGMA Nanoparticles for Cancer Cell Targeting

    Feixiong Hu
    Abstract Poly(L -lactic acid)- block -poly(poly(ethylene glycol) monomethacrylate) (PLLA- b -PPEGMA) has been prepared by the ring-opening polymerization of lactide with a double-headed initiator, 2-hydroxyethyl 2,-methyl-2,-bromopropionate (HMBP), followed by atom transfer radical polymerization (ATRP) of poly(ethylene glycol) monomethacrylate (PEGMA). PLLA- b -PPEGMA nanoparticles with encapsulated Fe3O4 are prepared by a solvent evaporation/extraction technique, and then further functionalized with folic acid, a cancer targeting ligand. Our results show that such functionalized PLLA- b -PPEGMA nanoparticles have good potential as carriers for targeted drug delivery in cancer treatment. [source]

    Surface Functionalization of Fe3O4 Magnetic Nanoparticles via RAFT-Mediated Graft Polymerization

    Wen-Cai Wang
    Abstract Summary: Surface functionalization of Fe3O4 magnetic nanoparticles (MNP) via living radical graft polymerization with styrene and acrylic acid (AAc) in the reversible addition-fragmentation chain transfer (RAFT)-mediated process was reported. Peroxides and hydroperoxides generated on the surface of Fe3O4 nanoparticles via ozone pretreatment facilitated the thermally initiated graft polymerization in the RAFT-mediated process. A comparison of the MNP before and after the RAFT-mediated process was carried out using transmission electron microscopy (TEM) analysis, Fourier transform infrared (FTIR), and X-ray photoelectron spectroscopy (XPS). Gel permeation chromatography (GPC) was used to determine the molecular weight of the free homopolymer in the reaction mixture. Well-defined polymer chains were grown from the MNP surfaces to yield particles with a Fe3O4 core and a polymer outer layer. The resulting core,shell Fe3O4 - g -polystyrene and Fe3O4 - g -poly(acrylic acid) (PAAc) nanoparticles formed stable dispersions in the organic solvents for polystyrene (PS) and PAAc, respectively. Schematic illustration of thermally induced graft polymerization of styrene and AAc with the ozone-treated Fe3O4 MNP. [source]

    Studies of oxygen uptake on O2 scavengers ­prepared from different iron-containing ­parent substances

    Zenon Foltynowicz
    Abstract Temperature-programmed reduction (TPR) measurements were performed for iron oxalates, iron(III) hydroxide (both pure and with additives) and iron(II, III) oxide. On the ground of TPR curves, reduction temperatures of the iron-containing parent substances were chosen followed by oxygen uptake determination. Comparison of oxygen uptakes points to the use of Fe(OH)3 and Fe3O4 as more advantageous than that of iron oxalates. Co-precipitation from a mixed solution of iron and manganese salts results in a product which is more resistant to particle agglomeration at elevated temperatures than that obtained by­precipitation from solution of iron salt alone. Copyright © 2002 John­Wiley & Sons, Ltd. [source]