Empirical Correlations (empirical + correlation)

Distribution by Scientific Domains

Selected Abstracts

Experimental study on stable steam condensation in a quenching tank

Hwan Y. Kim
Abstract Experimental study on direct contact condensation (DCC) of a stable steam discharging into a quenching tank with sub-cooled water has been performed for five different sizes of horizontal nozzles over a wide range of steam mass flux and pool temperature conditions. Two different steam jet shapes (conical and ellipsoidal) were typically observed, depending on the steam mass flux and the pool temperature. The steam jet expansion ratios, the dimensionless steam jet lengths, and the average heat transfer coefficients were determined and the effects of steam mass flux, pool temperature, and nozzle diameter on these parameters were discussed. Empirical correlations for the dimensionless steam jet length and the average heat transfer coefficient as a function of steam mass flux and condensation driving potential were established. The axial and radial temperature distributions in the steam jet and in the surrounding pool water were measured and the effects of steam mass flux, pool temperature, and nozzle diameter on these parameters were also discussed. Copyright © 2001 John Wiley & Sons, Ltd. [source]

Gas,liquid mass transfer in three-phase inverse fluidized bed reactor with Newtonian and non-Newtonian fluids

V. Sivasubramanian
Abstract Liquid-phase volumetric mass transfer coefficients, kLa were determined in three-phase inverse fluidized beds of low-density polyethylene (LDPE) and polypropylene (PP) spheres fluidized by a countercurrent flow of air and Newtonian (water and glycerol solutions) or non-Newtonian liquids [carboxy methyl cellulose (CMC) solutions]. The effects of liquid and gas velocities, particle size, solid loading and addition of organic additives (glycerol and CMC) on the volumetric mass transfer coefficient, kLa were determined. The superficial liquid velocity had a weak effect on the mass transfer whereas the gas flow rate affected the mass transfer positively. kLa increased with increase in particle diameter and decreased with increase in initial bed height (solid loading). kLa decreased as the concentration of glycerol (viscosity) and CMC increased. Empirical correlations are presented to predict the gas,liquid volumetric mass transfer coefficient in terms of operating variables. Copyright © 2009 Curtin University of Technology and John Wiley & Sons, Ltd. [source]

Seismic vulnerability assessment using regional empirical data

Ahmet Yakut
Abstract This article presents a procedure developed for the seismic performance assessment of low- to mid-rise reinforced concrete buildings in Turkey. The past performance of reinforced concrete buildings during major earthquakes have been compiled and analysed comprehensively using statistical procedures in order to study the empirical correlation between the significant damage inducing parameters and the observed damage. A damage database of nearly 500 representative buildings experiencing the 1999 Kocaeli and Düzce earthquakes have been used and discriminant functions expressing damage score in terms of six damage inducing parameters have been developed. In order to extrapolate the procedure to other regions that are likely to be subjected to major earthquakes a new approach that takes into account different local soil conditions, site-to-source distance and the magnitude of the earthquake has been introduced. The procedure has been applied to a pilot area in Istanbul to estimate expected damage distribution under a credible scenario earthquake. Copyright © 2006 John Wiley & Sons, Ltd. [source]

Temperature measurements near a heating surface at high heat fluxes in subcooled pool boiling

Ayako Ono
Abstract In previous papers (Int J Heat Mass Transfer, 2008;50:3481,3489, 2009;52: 814,821), the authors conducted measurements of liquid,vapor structures in the vicinity of a heating surface for subcooled pool boiling on an upward-facing copper surface by using a conducting probe method. We reported that the macrolayer dryout model is the most appropriate model of the CHF and that the reason why the CHF increases with increasing subcooling is most likely that a thick macrolayer is able to form beneath large vapor masses and the lowest heat flux of the vapor mass region shifts towards the higher heat flux. To develop a mechanistic model of the CHF for subcooled boiling, therefore, it is necessary to elucidate the effects of local subcooling on boiling behaviors in the vicinity of a heating surface. This paper measured local temperatures close to a heating surface using a micro-thermocouple at high heat fluxes for water boiling on an upward-facing surface in the 0 to 40 K range of subcooling. A value for the effective subcooling, defined as the local subcooling during the period while vapor masses are being formed was estimated from the detected bottom peaks of the temperature fluctuations. It was established that the effective subcooling adjacent to the surface remains at considerably lower values than the bulk liquid subcooling. This suggests that, from nucleation to coalescence, the subcooling of a bulk liquid has a smaller effect on the behavior of primary bubbles than the extent of the subcooling would appear to suggest. An empirical correlation of the effective subcooling is proposed to provide a step towards quantitative modeling of the CHF for subcooled boiling. © 2009 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/htj.20277 [source]

The assessment of surface water resources for the semi-arid Yongding River Basin from 1956 to 2000 and the impact of land use change

Lei Wang
Abstract The assessment of surface water resources (SWRs) in the semi-arid Yongding River Basin is vital as the basin has been in a continuous state of serious water shortage over the last 20 years. In this study, the first version of the geomorphology-based hydrological model (GBHM) has been applied to the basin over a long period of time (1956,2000) as part of an SWR assessment. This was done by simulating the natural hydrological processes in the basin. The model was first evaluated at 18 stream gauges during the period from 1990 to 1992 to evaluate both the daily streamflows and the annual SWRs using the land use data for 1990. The model was further validated in 2000 with the annual SWRs at seven major stream gauges. Second, the verified model was used in a 45-year simulation to estimate the annual SWRs for the basin from 1956 to 2000 using the 1990 land use data. An empirical correlation between the annual precipitation and the annual SWRs was developed for the basin. Spatial distribution of the long-term mean runoff coefficients for all 177 sub-basins was also achieved. Third, an additional 10-year (1991,2000) simulation was performed with the 2000 land use data to investigate the impact of land use changes from 1990 to 2000 on the long-term annual SWRs. The results suggest that the 10-year land use changes have led to a decrease of 8·3 × 107 m3 (7·9% of total) for the 10-year mean annual SWRs in the simulation. To our knowledge, this work is the first attempt to assess the long-term SWRs and the impact of land use change in the semi-arid Yongding River Basin using a semi-distributed hillslope hydrological model. Copyright © 2010 John Wiley & Sons, Ltd. [source]

Strength of two structured soils in triaxial compression

Ron C. K. Wong
Abstract Oil sands are dense granular materials with interlocked structure and clay shales are heavily overconsolidated clays. They are classified as structured soil or weak rock, exhibiting high peak strength with severe softening and dilation, particularly at low confining stress. The triaxial compression test results indicate that both materials yield linear Mohr,Coulomb envelopes with an apparent cohesion for peak and residual strengths. However, the strength components mobilized from these two materials are very different. This paper investigates if these strength parameters are intrinsic properties or responses derived in triaxial compression conditions. Computer tomography scanning technique is used to aid in examining the micro-structural features of the sheared specimens such as shear banding pattern, shear band thickness, spatial porosity distributions inside and outside shear bands. These micro-structural features are used to explain the macro-deformation response observed in the triaxial compression tests. Mobilization of strength components derived from interlocked structure, cementation, dilation, rolling and critical state are analysed for pre-, post-peak softening and residual stages. It is found that the empirical correlation such as Mohr,Coulomb failure criterion based on triaxial compression test results does not necessarily reflect the intrinsic properties of the test materials. Testing conditions are embedded in the empirical correlation. Copyright © 2001 John Wiley & Sons, Ltd. [source]

Least-correlation estimates for errors-in-variables models

Byung-Eul Jun
Abstract This paper introduces an estimator for errors-in-variables models in which all measurements are corrupted by noise. The necessary and sufficient condition minimizing a criterion, defined by squaring the empirical correlation of residuals, yields a new identification procedure that we call least-correlation estimator. The method of least correlation is a generalization of least-squares since the least-correlation specializes to least-squares when the correlation lag is zero. The least-correlation estimator has the ability to estimate true parameters consistently from noisy input,output measurements as the number of samples increases. Monte Carlo simulations also support the consistency numerically. We discuss the geometric property of the least-correlation estimate and, moreover, show that the estimate is not an orthogonal projection but an oblique projection. Finally, recursive realizations of the procedure in continuous-time as well as in discrete-time are mentioned with a numerical demonstration. Copyright © 2006 John Wiley & Sons, Ltd. [source]

A solar ejector air-conditioning system using environment-friendly working fluids

E. Nehdi
Abstract In this paper, the performance of the solar-driven ejector air conditioning with several environment-friendly working fluids is studied. The effect of the fluid nature and operating conditions on the ejector performance is examined. This performance is calculated using an empirical correlation. Thermodynamic properties of functioning fluids are obtained with a package REFPROP7. It appears that the refrigerant R717 offers the highest coefficient of performance (COP). For generator temperature TB,=,90°C, condenser temperature TC,=,35°C and evaporator temperature TE,=,15°C and with R717, the COP of ejector air-conditioning system is 0.408. Using a meteorological data for the city of Tunis, the system performance is computed for three collector types. The air-conditioning season and period were taken for six months from April to September. The daily period is between 8 and 17,h. For the solar air-conditioning application, the COP of the overall system varied from 0.21 to 0.28 and the exergy efficiency varied from 0.14 to 0.19 with the same working conditions and total solar radiation (351,875,Wm,2) in July. Copyright © 2008 John Wiley & Sons, Ltd. [source]

The effect of gas-liquid counter-current operation on gas hold-up in bubble columns using electrical resistance tomography,

Haibo Jin
Abstract BACKGROUND: In order to improve the performance of a counter-current bubble column, radial variations of the gas hold-ups and mean hold-ups were investigated in a 0.160 m i.d. bubble column using electrical resistance tomography with two axial locations (Plane 1 and Plane 2). In all experiments the liquid phase was tap water and the gas phase air. The superficial gas velocity was varied from 0.02 to 0.25 m s,1, and the liquid velocity varied from 0 to 0.01 m s,1. The effect of liquid velocity on the distribution of mean hold-ups and radial gas hold-ups is discussed. RESULTS: The gas hold-up profile in a gas,liquid counter-current bubble column was determined by electrical resistance tomography. The liquid velocity slightly influences the mean hold-up and radial hold-up distribution under the selected operating conditions and the liquid flow improves the transition gas velocity from a homogeneous regime to a heterogeneous regime. Meanwhile, the radial gas hold-up profiles are steeper at the central region of the column with increasing gas velocity. Moreover, the gas hold-up in the centre of the column becomes steeper with increasing liquid velocity. CONCLUSIONS: The value of mean gas hold-ups slightly increases with increasing downward liquid velocity, and more than mean gas hold-ups in batch and co-current operation. According to the experimental results, an empirical correlation for the centreline gas hold-up is obtained based on the effects of gas velocity, liquid velocity, and ratio of axial height to column diameter. The values calculated in this way are in close agreement with experimental data, and compare with literature data on gas hold-ups at the centre of the column. Copyright © 2010 Society of Chemical Industry [source]

Hydrodynamics and mass transfer of gas,liquid flow in a falling film microreactor

AICHE JOURNAL, Issue 5 2009
Haocui Zhang
Abstract In this article, flow pattern of liquid film and flooding phenomena of a falling film microreactor (FFMR) were investigated using high-speed CCD camera. Three flow regimes were identified as "corner rivulet flow," "falling film flow with dry patches," and "complete falling film flow" when liquid flow rate increased gradually. Besides liquid film flow in microchannels, a flooding presented as the flow of liquid along the side wall of gas chamber in FFMR was found at high liquid flow rate. Moreover, the flooding could be initiated at lower flow rate with the reduction of the depth of the gas chamber. CO2 absorption was then investigated under the complete falling flow regime in FFMR, where the effects of liquid viscosity and surface tension on mass transfer were demonstrated. The experimental results indicate that kL is in the range of 5.83 to 13.4 × 10,5 m s,1 and an empirical correlation was proposed to predict kL in FFMR. © 2009 American Institute of Chemical Engineers AIChE J, 2009 [source]

Explaining the enhanced performance of pulsed bioreactors by mechanistic modeling

AICHE JOURNAL, Issue 5 2008
Amaya Franco
Abstract In this work, steady-state mass balance based models were applied to two UASB reactors and three UAF for a better understanding of the role of pulsation on the efficacy improvement. Models were defined taking into account the hydraulic behavior of each digester and the limiting mechanism of the overall process kinetics (mass transfer or biochemical reaction rate). The application of the model allows to identify that mass transfer was the controlling step in all the reactors, except for the nonpulsed UASB, where methanogenic activity controlled the reactor performance in the last operation steady states. Mass transfer coefficients were higher for pulsed reactors and, in general, a good agreement between those estimated by an empirical correlation and from the model was obtained. Damköhler number values supported that the external mass transfer resistance was not negligible with respect to the process kinetic and in addition, in most cases, it controls the overall process in the reactors. The relative importance of external and internal mass transfer rate was calculated through the Biot number. The values of this dimensionless module indicated that external transport was the main contributor to overall mass transfer resistance. © 2008 American Institute of Chemical Engineers AIChE J, 2008 [source]

Heat transfer to a moving packed bed of nickel pellets

M. H. I. Baird
Abstract Heat transfer between a bed of nickel pellets and a vertical section of electrically heated steel pipe has been measured, with the pellet bed inside the vertical pipe. Most of the data are for a 20.27 cm diameter pipe but some data were also obtained for a 10.23 cm diameter pipe. The effective thermal conductivity of the stationary pellet bed has been estimated approximately from the results of unsteady heating tests. Tests have been carried out with a downwardly moving bed, including the effect of air flowing upwards through the bed. Average values of the pellet-side heat transfer coefficient are between 72 and 135 W/(m2°C) depending on the mass fluxes of air and pellets, and have been expressed as an empirical correlation. Le transfert de chaleur entre un lit de pastilles de nickel et une section verticale d'une conduite d'acier chauffée électriquement a été mesuré, le lit de pastilles se trouvant à l'intérieur de la conduite verticale. La plupart des données ont été obtenues pour une conduite de 20,27 cm de diamètre, mais certaines données ont également été obtenues pour une conduite de 10,23 cm de diamètre. La conductivité thermique effective d'un lit de pastilles stationnaire a été estimée de manière approximative à partir des résultats de tests de chauffe en régime non stationnaire. Les tests ont été menés avec un lit en mouvement descendant, incluant l'effet de l'air circulant dans le sens ascendant dans le lit. Les valeurs moyennes du coefficient de transfert de chaleur du côté des pastilles sont comprises entre 72 et 135 W/(m2°C) selon les flux massiques de l'air et des pastilles, et sont exprimées en tant que corrélation empirique. [source]

Measurement and Correlation of Critical Gas and Liquid Velocities for Complete Circulation of Solid Particles in External Loop Airlift Bubble Columns

Katsumi Nakao
Abstract The external loop airlift bubble column provides an easy way of good contacting among gas, liquid and solid phases due to a relatively high recirculating liquid velocity UL. The critical gas and liquid velocities for complete circulation of solid particles, UG,C and UL,C, were measured in two different scales of columns with air, tap water and aqueous CMC solutions, and ion exchange resin and glass beads (155,3834 µm) were employed. The UG,C was determined as the inflection point on the plot of the pressure drop due to the suspended solid particles in the downcomer as a function of the gas velocity UG. The critical liquid velocity UL,C corresponding to the UG,C was obtained from the measured relationship between UL and UG. As a result, a unified dimensionless empirical correlation of UL,C was obtained within an error of ±20% and a dimensionless empirical relationship between UL and UG was developed within an error of ±15%. La colonne à bulles de type airlift à boucle externe offre un moyen facile pour le contact entre les phases gazeuse, liquide et solide grâce à la vitesse de liquide en recirculation UL relativement élevée. Les vitesses de gaz et de liquide critiques pour la circulation complète des particules solides, UG,C et UL,C, ont été mesurées dans deux colonnes d'échelle différente avec de l'air, de l'eau du robinet et des solutions aqueuses de CMC, et des billes de verre et de résine échandeuse d'ions (155,3834 µm) ont été employées. La vitesse UG,C est déterminée comme étant le point d'inflexion sur la courbe de la perte de chgarge causée par les particules solides suspendues dans le déversoir en fonction de la vitesse de gaz UG. La vitesse de liquide critique UL.C correspondant à la vitesse UG.C est obtenue à partir de la relation mesurée entre UL et UG. Ainsi, on obtient une corrélation empirique adimensionnelle unifiée de UL.C avec une erreur de ± 20% et une relation empirique adimensionnelle entre UL et UG est établie avec une erreur de ±15%. [source]

Transfert de matière liquide-disque dans l'écoulement radial divergent entre disques , étude portant sur différentes échelles du système

Thomas Z. Fahidy
Abstract Le travail étudie expérimentalement le transport de matière stationnaire liquide-disque dans le cas de l'écoulement radial divergent entre disques circulaires parallèles faiblement distants. Les résultats sont analysés en prenant en compte l'influence de l'effet d'échelle, et au travers d'une corrélation empirique générale entre groupes adimensionnels (Sh, Re, Sc) et facteurs géométriques adimensionnels. La corrélation empirique obtenue est comparée à une solution théorique approchée pour le régime laminaire. Steady-state mass transport between liquid phase and parallel circular disks was studied experimentally in divergent radial flow. The results demonstrate the effect of electrode size/cell via a general empirical correlation based on dimensionless groups (Sh, Re, Sc) and geometrical factors. The correlation is discussed comparatively with an approximate theoretical solution for the laminar flow regime. [source]

Efficiency of non-reactive isothermal bubble column based on mass transfer

Subrata Kumar Majumder Assistant Professor
Abstract Bubble column reactor as a gas,liquid contactor is extensively used in the chemical and biochemical industries. Mass transfer coefficients governing the transport processes in bubble contactors are a growing concern in chemical and biotechnological processes whose rates are often limited by the mass transfer rate. The influences of different physical, dynamic and geometric variables affect the efficiency characterization of the equipment which are involved in gas/liquid mass transfer processes. This characterization has great importance to optimize the process plant design. In this article, efficiency of two-phase mass transfer in bubble column reactors has been analyzed based on dynamic, geometric and physical variables of the system. An empirical correlation for mass transfer efficiency has also been developed in terms of those variables. The present analysis on the gas,liquid mass transfer efficiency of bubble column may give insight into a further understanding and modeling of multiphase reactors in industrial applications. Copyright © 2008 Curtin University of Technology and John Wiley & Sons, Ltd. [source]

Thermodynamic optimization of a solar system for cogeneration of water heating and absorption cooling

R. Hovsapian
Abstract This paper presents a contribution to understanding the behavior of solar-powered air conditioning and refrigeration systems with a view to determining the manner in which refrigeration rate, mass flows, heat transfer areas, and internal architecture are related. A cogeneration system consisting of a solar concentrator, a cavity-type receiver, a gas burner, and a thermal storage reservoir is devised to simultaneously produce heat (hot water) and cooling (absorption refrigerator system). A simplified mathematical model, which combines fundamental and empirical correlations, and principles of classical thermodynamics, mass and heat transfer, is developed. The proposed model is then utilized to simulate numerically the system transient and steady-state response under different operating and design conditions. A system global optimization for maximum performance (or minimum exergy destruction) in the search for minimum pull-down and pull-up times, and maximum system second law efficiency is performed with low computational time. Appropriate dimensionless groups are identified and the results are presented in normalized charts for general application. The numerical results show that the three-way maximized system second law efficiency, ,II,max,max,max, occurs when three system characteristic mass flow rates are optimally selected in general terms as dimensionless heat capacity rates, i.e. (,ss, ,wxwx, ,Hs)opt=(0.335, 0.28, 0.2). The minimum pull-down and pull-up times, and maximum second law efficiencies found with respect to the optimized operating parameters are sharp and, therefore, important to be considered in actual design. As a result, the model is expected to be a useful tool for simulation, design, and optimization of solar energy systems in the context of distributed power generation. Copyright © 2008 John Wiley & Sons, Ltd. [source]

Adiabatic capillary tube flow of carbon dioxide in a transcritical heat pump cycle

Neeraj Agrawal
Abstract Flow characteristics of an adiabatic capillary tube in a transcritical CO2 heat pump system have been investigated employing the homogeneous model. The model is based on fundamental equations of mass, energy and momentum which are solved simultaneously. Two friction factor empirical correlations (Churchill, Lin et al., Int. J. Multiphase Flow 1991; 17(1):95,102) and four viscosity models (Mcadams, Cicchitti, Dukler and Lin) are comparatively used to investigate the flow characteristics. Choked condition at the outlet is also investigated for maximum mass flow rate. Subcritical and supercritical thermodynamic and transport properties of CO2 are calculated employing a precision property code. Choice of viscosity model causes minor variation in results unlike in chlorofluorocarbons (CFCs) refrigerants. Relationships between cooling capacity with capillary tube diameter, length and maximum mass flow rate are presented. A lower evaporating temperature yields a larger cooling capacity due to the unique thermodynamic properties of CO2. It is also observed that an optimum cooling capacity exists for a specified capillary tube. Copyright © 2006 John Wiley & Sons, Ltd. [source]

Performance characteristics and modelling of a micro gas turbine for their integration with thermally activated cooling technologies

Adrián Vidal
Abstract We have developed a simple model of a micro gas turbine system operating at high ambient temperatures and characterized its performance with a view to integrating this system with thermally activated cooling technologies. To develop and validate this model, we used experimental data from the micro gas turbine test facility of the CREVER research centre. The microturbine components were modelled and the thermodynamic properties of air and combustion gases were estimated using a commercial process simulator. Important information such as net output power, microturbine fuel consumption and exhaust gas mass flow rate can be obtained with the empirical correlations we have developed in this study. This information can be useful for design exhaust gas fired absorption chillers. Copyright © 2006 John Wiley & Sons, Ltd. [source]

Comparison of solar radiation correlations for ,zmir, Turkey

K. Ulgen
Abstract In this study, empirical correlations are developed to estimate the monthly average daily global solar radiation on a horizontal surface (H) for the city of ,zmir in Turkey. Experimental data were measured in the Solar,Meteorological Station of the Solar Energy Institute at Ege University. The present models are then compared with the 25 models available in the literature for calculating H based on the main percentage error, root mean error, the main bias error, and correlation coefficient. It can be concluded that the present models predict the values of H for ,zmir better than other available models. Copyright © 2002 John Wiley & Sons, Ltd. [source]

Minimum fluidization velocity and gas holdup in gas,liquid,solid fluidized bed reactors

K Ramesh
Abstract Experiments were performed to study the hydrodynamics of a cocurrent three-phase fluidized bed with liquid as continuous phase. Based on the 209 experimental data (with four liquid systems and five different particles) along with 115 literature data from six different sources on minimum fluidization velocity, a unique correlation for the estimation of minimum fluidization velocity in two-phase (ug,=,0) as well as in three-phase systems is developed. A data bank consisting of 1420 experimental measurements for the fractional gas phase holdup data with a wide range of variables is used for developing empirical correlations. Separate correlations are developed for two flow regimes observed in this present work. The proposed correlations are more accurate and simpler to use. © 2002 Society of Chemical Industry [source]

15N NMR chemical shifts of ring substituted benzonitriles


Abstract 15N chemical shifts in an extensive series of para (15) and meta (15) as well as ortho (8) substituted benzonitriles, XC6H4CN, were measured in deuteriochloroform solutions, using three different methods of referencing. The standard error of the average chemical shift was less than 0.03 ppm in most cases. The results are discussed for both empirical correlations with substituent parameters and quantum chemical calculations. The 15N chemical shifts calculated at the GIAO/B3LYP/6,31 + G*//B3LYP/6,31 + G* level reproduce the experimental values well, and include nitrogen atoms in the substituent groups (range of 300 ppm with slope 0.98 and R = 0.998, n = 43). The 15N shifts in hydroxybenzonitriles are affected by interaction with the OH group. Therefore, these derivatives are excluded from the correlation analysis. The resultant 15N chemical shift correlates well with substituent constants, both in the simple Hammett or DSP relationships and the 13C substituent-induced chemical shifts of the CN carbon. Copyright © 2006 John Wiley & Sons, Ltd. [source]

13C and 1H nuclear magnetic resonance of methyl-substituted acetophenones and methyl benzoates: steric hindrance and inhibited conjugation

Abstract The 1H and 13C NMR spectra of 14 methyl-substituted acetophenones and 14 methyl-substituted methyl benzoates were assigned and interpreted with respect to the conformation of the Car,C(O) bond. The substituent effects are proportional in the two series and can be divided into polar and steric: each has different effects on the 13C SCS of the individual atoms. In the case of C atoms C(O), C(1) and CH3(CO), the steric effects were quantitatively separated by comparing SCS in the ortho and para positions. The steric effects are proportional for the individual C atoms and also to steric effects estimated from other physical quantities. However, they do not depend simply on the angle of torsion , of the functional group as anticipated hitherto. A better description distinguishes two classes of compounds: sterically not hindered or slightly hindered planar molecules and strongly sterically hindered, markedly non-planar. In order to confirm this reasoning without empirical correlations, the J(C,C) coupling constants were measured for three acetophenone derivatives labeled with 13C in the acetyl methyl group. The constants confirm unambiguously the conformation of 2-methylacetophenone; their zero values are in accord with the conformation of 2,6-dimethylacetophenone. The zero values in the unsubstituted acetophenone are at variance with previous erroneous report but all J(C,C) values are in accord with calculations at the B3LYP/6-311++G(2d,2p)//B3LYP/6,311+G(d,p) level. Copyright © 2004 John Wiley & Sons, Ltd. [source]

Simple Relationship for Predicting Impact Sensitivity of Nitroaromatics, Nitramines, and Nitroaliphatics

Hossein Keshavarz, Mohammad
Abstract This paper describes the development of a simple model for predicting the impact sensitivity of nitroaromatics, benzofuroxans, nitroaromatics with ,-CH, nitramines, nitroaliphatics, nitroaliphatics containing other functional groups, and nitrate energetic compounds using their molecular structures. The model is optimized using a set of 86 explosives for which different structural parameters exist. The model is applied to a test set of 120 explosives from a variety of the mentioned chemical families in order to confirm the reliability of a new method. Elemental composition and two specific structural parameters, that can increase or decrease impact sensitivity, would be needed in this new scheme. The predicted impact sensitivities for both sets have a root mean square (rms) of deviation from experiment of 23,cm, which shows good agreement with respect to the measured values as compared to the best available empirical correlations. [source]

Analytic Model of Laminar-Turbulent Transition for Bingham Plastics

K. C. Wilson
Abstract It is often desirable to operate industrial pipelines transporting non-Newtonian materials near the transition from laminar to turbulent flow. For the commonly used Bingham plastic model, the Hedström technique overestimates turbulent flow friction losses because it does not take account of viscous-layer thickening. In the present paper, the Wilson-Thomas model is applied to predict the transition point for Bingham plastics. Laminar and turbulent friction losses are calculated to show that conditions at transition depend only on the Hedström number. The results are approximated by simplified fit functions. Comparison with existing empirical correlations and experimental data from various sources shows satisfactory agreement. Il est souvent préférable d'utiliser les pipelines industriels transportant des matériaux non newtoniens près de la transition entre l'écoulement laminaire et l'écoulement turbulent. Pour le modèle classique des fluides de Bingham, la technique d'Hedström surestime les pertes de friction de l'écoulement turbulent parce qu'elle ne prend pas en compte l'épaississement de la couche visqueuse. Dans le présent article, on applique le modèle de Wilson-Thomas pour prédire le point de transition pour des fluides de Bingham. Les pertes de friction laminaires et turbulentes sont calculées et montrent que les conditions lors de la transition dépendent uniquement du nombre d'Hedström. Les résultats sont exprimés sous forme approximative par des fonctions de calage simplifiées. La comparaison avec des corrélations empiriques et des données expérimentales provenant de diverses sources montre un accord satisfaisant. [source]

A Study on Hydrodynamics and Heat Transfer in a Bubble Column Reactor with Yeast and Bacterial Cell Suspensions

Nigar Kantarci
Abstract Hydrodynamics and heat transfer experiments were carried out in a slurry bubble column with air-water-yeast cells and air-water-bacteria cells systems to investigate gas hold-up, bubble characteristics and heat transfer coefficients with cell concentrations of 0.1% w/w and 0.4% w/w and superficial gas velocity up to 0.20 m/s. The gas hold-ups and heat transfer coefficients were found to increase with increasing gas velocity and cell concentration. The heat transfer coefficients were higher at the centre of the column as compared to the near wall region. The development of empirical correlations to predict the heat transfer coefficient in two- and three-phase systems was carried out with ±15% confidence interval at most. On a réalisé des expériences d'hydrodynamique et de transfert de chaleur dans une colonne triphasique gaz-liquide-solide avec des systèmes de cellules air-eau-levure et de cellules air-eau-bactéries afin d'étudier la rétention de gaz, les caractéristiques des bulles et les coefficients de transfert de chaleur avec des concentrations de cellules de 0,1 % en poids et 0,4 % en poids et des vitesses de gaz superficielles jusqu'à 0,20 m/s. On a trouvé que les rétentions de gaz et les coefficients de transfert de chaleur augmentaient avec la vitesse de gaz et la concentration en cellules. Les coefficients de transfert de chaleur sont plus grands au centre de la colonne que dans la région proche de la paroi. Des corrélations empiriques pour prédire le coefficient de transfert de chaleur dans des systèmes bi et triphasiques ont été établies avec un écart de confiance inférieur ou égal à ± 15%. [source]

Gas Hold-up and Liquid Circulation Velocity in Gas-Liquid-Solid Airlift Reactors

Milan K. Popovi
Abstract Simple empirical correlations for gas hold-up and liquid circulation velocity in two- and three-phase airlift reactors are presented in this paper and their applicability has been demonstrated. The empirical correlations are good alternatives to the semi-theoretical drift-flux approach to predictions of gas hold-ups and liquid circulation velocities in airlift reactors. Des corrélations empiriques simples pour la rétention de gaz et la vitesse de circulation liquide dans des réacteurs à air ascendant diphasiques et triphasiques sont présentées dans cet article et leur applicabilité est démontrée. Les corrélations empiriques sont de bonnes alternatives aux méthodes de dérive de flux semi-théoriques pour les prédictions des rétentions de gaz et des vitesses de circulation du liquide dans les réacteurs à air ascendant. [source]

Scale-up from shake flasks to fermenters in batch and continuous mode with Corynebacterium glutamicum on lactic acid based on oxygen transfer and pH

Juri M. Seletzky
Abstract Scale-up from shake flasks to fermenters has been hampered by the lack of knowledge concerning the influence of operating conditions on mass transfer, hydromechanics, and power input. However, in recent years the properties of shake flasks have been described with empirical models. A practical scale-up strategy for everyday use is introduced for the scale-up of aerobic cultures from shake flasks to fermenters in batch and continuous mode. The strategy is based on empirical correlations of the volumetric mass transfer coefficient (kLa) and the pH. The accuracy of the empirical kLa correlations and the assumptions required to use these correlations for an arbitrary biological medium are discussed. To determine the optimal pH of the culture medium a simple laboratory method based on titration curves of the medium and a mechanistic pH model, which is solely based on the medium composition, is applied. The effectiveness of the scale-up strategy is demonstrated by comparing the behavior of Corynebacterium glutamicum on lactic acid in shake flasks and fermenters in batch and continuous mode. The maximum growth rate (µmax,=,0.32 h,1) and the oxygen substrate coefficient (,=,0.0174 mol/l) of C. glutamicum on lactic acid were equal for shake flask, fermenter, batch, and continuous cultures. The biomass substrate yield was independent of the scale, but was lower in batch cultures (YX/S,=,0.36 g/g) than in continuous cultures (YX/S,=,0.45 g/g). The experimental data (biomass, respiration, pH) could be described with a simple biological model combined with a mechanistic pH model. Biotechnol. Bioeng. 2007; 98: 800,811. © 2007 Wiley Periodicals, Inc. [source]

Ultra scale-down approach to correct dispersive and retentive effects in small-scale columns when predicting larger scale elution profiles

N. Hutchinson
Abstract Ultra scale-down approaches represent valuable methods for chromatography development work in the biopharmaceutical sector, but for them to be of value, scale-down mimics must predict large-scale process performance accurately. For example, one application of a scale-down model involves using it to predict large-scale elution profiles correctly with respect to the size of a product peak and its position in a chromatogram relative to contaminants. Predicting large-scale profiles from data generated by small laboratory columns is complicated, however, by differences in dispersion and retention volumes between the two scales of operation. Correcting for these effects would improve the accuracy of the scale-down models when predicting outputs such as eluate volumes at larger scale and thus enable the efficient design and operation of subsequent steps. This paper describes a novel ultra scale-down approach which uses empirical correlations derived from conductivity changes during operation of laboratory and pilot columns to correct chromatographic profiles for the differences in dispersion and retention. The methodology was tested by using 1 mL column data to predict elution profiles of a chimeric monoclonal antibody obtained from Protein A chromatography columns at 3 mL laboratory- and 18.3 L pilot-scale. The predictions were then verified experimentally. Results showed that the empirical corrections enabled accurate estimations of the characteristics of larger-scale elution profiles. These data then provide the justification to adjust small-scale conditions to achieve an eluate volume and product concentration which is consistent with that obtained at large-scale and which can then be used for subsequent ultra scale-down operations. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009 [source]

Simulation and Experiment of Temperature and Cosolvent Effects in Reversed Phase Chromatography of Peptides

Kosta Makrodimitris
Experiments and simulations have been carried out for several polar protected peptides in reversed phase chromatography in order to demonstrate how simulation can describe the effects of varying temperature and cosolvent fraction. Comparisons of adsorption chemical potentials from mesoscopic simulations and experimental chromatographic retention data show very good agreement with only one temperature-independent solvent parameter from a single peptide. Such simulations should help guide the design of chromatography experiments with biomolecules and predict retention, including conditions for which empirical correlations such as hydrophobicity scales and molecular descriptors have not been developed. [source]

Lipid-Bilayer Permeation of Drug-Like Compounds

Abstract Lipid-bilayer permeation is determinant for the disposition of xenobiotics in the body. It controls the pharmacokinetic behavior of drugs and is, in many cases, a prerequisite for intracellular targeting. Permeation of in vivo barriers is in general predicted from lipophilicity and related parameters. This article goes beyond the empirical correlations, and elucidates the processes and their interplay determining bilayer permeation. A flip-flop model for bilayer permeation, which considers the partitioning rate constants beside the translocation rate constants, is compared with the diffusion model based on Fick's first law. According to the flip-flop model, the ratios of aqueous volumes to barrier area can determine whether partitioning or translocation is rate-limiting. The flip-flop model allows permeation of anions and cations, and expands our understanding of pH-dependent permeation kinetics. Some experimental evidences for ion-controlled permeation at pH,7 are also included in this work. [source]