Ecological Principles (ecological + principle)

Distribution by Scientific Domains


Selected Abstracts


A competitive coexistence principle?

OIKOS, Issue 10 2009
Cathy Neill
Competitive exclusion , n species cannot coexist on fewer than n limiting resources in a constant and isolated environment , has been a central ecological principle for the past century. Since empirical studies cannot universally demonstrate exclusion, this principle has mainly relied on mathematical proofs. Here we investigate the predictions of a new approach to derive functional responses in consumer/resource systems. Models usually describe the temporal dynamics of consumer/resource systems at a macroscopic level , i.e. at the population level. Each model may be pictured as one time-dependent macroscopic trajectory. Each macroscopic trajectory is, however, the product of many individual fates and from combinatorial considerations can be realized in many different ways at the microscopic , or individual , level. Recently it has been shown that, in systems with large enough numbers of consumer individuals and resource items, one macroscopic trajectory can be realized in many more ways than any other at the individual , or microscopic , level. Therefore, if the temporal dynamics of an ecosystem are assumed to be the outcome of only statistical mechanics , that is, chance , a single trajectory is near-certain and can be described by deterministic equations. We argue that these equations can serve as a null to model consumer-resource dynamics, and show that any number of species can coexist on a single resource in a constant, isolated environment. Competition may result in relative rarity, which may entail exclusion in finite samples of discrete individuals, but exclusion is not systematic. Beyond the coexistence/exclusion outcome, our model also predicts that the relative abundance of any two species depends simply on the ratio of their competitive abilities as computed from , and only from , their intrinsic kinetic and stoichiometric parameters. [source]


Motivations for the Restoration of Ecosystems

CONSERVATION BIOLOGY, Issue 2 2006
ANDRE F. CLEWELL
cambio climático; capital natural; restauración ecológica Abstract:,The reasons ecosystems should be restored are numerous, disparate, generally understated, and commonly underappreciated. We offer a typology in which these reasons,or motivations,are ordered among five rationales: technocratic, biotic, heuristic, idealistic, and pragmatic. The technocratic rationale encompasses restoration that is conducted by government agencies or other large organizations to satisfy specific institutional missions and mandates. The biotic rationale for restoration is to recover lost aspects of local biodiversity. The heuristic rationale attempts to elicit or demonstrate ecological principles and biotic expressions. The idealistic rationale consists of personal and cultural expressions of concern or atonement for environmental degradation, reengagement with nature, and/or spiritual fulfillment. The pragmatic rationale seeks to recover or repair ecosystems for their capacity to provide a broad array of natural services and products upon which human economies depend and to counteract extremes in climate caused by ecosystem loss. We propose that technocratic restoration, as currently conceived and practiced, is too narrow in scope and should be broadened to include the pragmatic rationale whose overarching importance is just beginning to be recognized. We suggest that technocratic restoration is too authoritarian, that idealistic restoration is overly restricted by lack of administrative strengths, and that a melding of the two approaches would benefit both. Three recent examples are given of restoration that blends the technocratic, idealistic, and pragmatic rationales and demonstrates the potential for a more unified approach. The biotic and heuristic rationales can be satisfied within the contexts of the other rationales. Resumen:,Las razones por la que los ecosistemas deben ser restaurados son numerosas, dispares, generalmente poco sustentadas, y comúnmente poco apreciadas. Ofrecemos una tipología en la que estas razones,o motivaciones,son ordenadas entre cinco razonamientos: tecnocrático, biótico, heurístico, idealista y pragmático. El razonamiento tecnocrático se refiere a la restauración que es llevada a cabo por agencias gubernamentales u otras grandes organizaciones para satisfacer misiones y mandatos institucionales específicos. El razonamiento biótico de la restauración es la recuperación de aspectos perdidos de la biodiversidad local. El razonamiento heurístico intenta extraer o demostrar principios ecológicos y expresiones bióticas. El razonamiento idealista consiste de expresiones personales y culturales de la preocupación o reparación de la degradación ambiental, reencuentro con la naturaleza y/o cumplimiento espiritual. El razonamiento pragmático busca recuperar o reparar ecosistemas por su capacidad de proporcionar una amplia gama de servicios y productos naturales de la que dependen las economías humanas y para contrarrestar extremos en el clima causados por la pérdida de ecosistemas. Proponemos que la restauración tecnocrática, como se concibe y practica actualmente, es muy corta en su alcance y debiera ampliarse para incluir al razonamiento pragmático, cuya importancia apenas comienza a ser reconocida. Sugerimos que la restauración tecnocrática es demasiado autoritaria, que la restauración idealista esta muy restringida por la falta de fortalezas administrativas, y que una mezcla de los dos enfoques podría beneficiar a ambas. Proporcionamos tres ejemplos recientes de restauración que combinan los razonamientos tecnocrático, idealista y pragmático y demuestran el potencial para un enfoque más unificado. Los razonamientos biótico y heurístico pueden ser satisfechos en el contexto de los otros razonamientos. [source]


Predicting species distribution: offering more than simple habitat models

ECOLOGY LETTERS, Issue 9 2005
Antoine Guisan
Abstract In the last two decades, interest in species distribution models (SDMs) of plants and animals has grown dramatically. Recent advances in SDMs allow us to potentially forecast anthropogenic effects on patterns of biodiversity at different spatial scales. However, some limitations still preclude the use of SDMs in many theoretical and practical applications. Here, we provide an overview of recent advances in this field, discuss the ecological principles and assumptions underpinning SDMs, and highlight critical limitations and decisions inherent in the construction and evaluation of SDMs. Particular emphasis is given to the use of SDMs for the assessment of climate change impacts and conservation management issues. We suggest new avenues for incorporating species migration, population dynamics, biotic interactions and community ecology into SDMs at multiple spatial scales. Addressing all these issues requires a better integration of SDMs with ecological theory. [source]


Community responses to contaminants: Using basic ecological principles to predict ecotoxicological effects

ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 9 2009
William H. Clements
Abstract Community ecotoxicology is defined as the study of the effects of contaminants on patterns of species abundance, diversity, community composition, and species interactions. Recent discoveries that species diversity is positively associated with ecosystem stability, recovery, and services have made a community-level perspective on ecotoxicology more important than ever. Community ecotoxicology must explicitly consider both present and impending global change and shift from a purely descriptive to a more predictive science. Greater consideration of the ecological factors and threshold responses that determine community resistance and resilience should improve our ability to predict how and when communities will respond to, and recover from, xenobiotics. A better understanding of pollution-induced community tolerance, and of the costs of this tolerance, should facilitate identifying contaminant-impacted communities, thus forecasting the ecological consequences of contaminant exposure and determining the restoration effectiveness. Given the vast complexity of community ecotoxicology, simplifying assumptions, such as the possibility that the approximately 100,000 registered chemicals could be reduced to a more manageable number of contaminant classes with similar modes of action, must be identified and validated. In addition to providing a framework for predicting contaminant fate and effects, food-web ecology can help to identify communities that are sensitive to contaminants, contaminants that are particularly insidious to communities, and species that are crucial for transmitting adverse effects across trophic levels. Integration of basic ecological principles into the design and implementation of ecotoxicological research is essential for predicting contaminant effects within the context of rapidly changing, global environmental conditions. [source]


Ecological, environmental and socioeconomic aspects of the Lake Victoria's introduced Nile perch fishery in relation to the native fisheries and the species culture potential: lessons to learn

AFRICAN JOURNAL OF ECOLOGY, Issue 2 2007
John S. Balirwa
Abstract Inland fishery ecosystems in Africa are characterized by patterns of overexploitation, environmental degradation and exotic species introductions. Ecological complexity and diversity of aquatic habitats dictate that fishes in general are not evenly distributed in a water body. However, fisheries management regimes tend to ignore this basic principle, assume generalized conditions in a water body, and focus more on ,desired' objectives such as maximizing catch. The result is to disregard fish habitat boundaries and anthropogenic influences from the catchment that influence fish production. Overexploitation and environmental degradation disrupt sustainable socioeconomic benefits from the fisheries, create uncertainty among investors, but leave some managers calling for more information with the expectation that the fisheries will recover with time. Open access to the fisheries and full control of fishing effort remain challenges for managers. Exotic species introductions and fish farming can increase production, but such interventions require firm commitment to sound ecological principles and strict enforcement of recommended conservation and co-management measures in capture fisheries. The general tendency to downplay fishing effort issues, other ecosystem values and functions or rely on temperate fisheries models until a new cycle of overexploitation emerges, characterizes many management patterns in inland fisheries. Aquaculture is not an option to challenges in capture fisheries management. Aquaculture should be developed to increase fish production but even this practice may have negative environmental impacts depending on practice and scale. Decades of information on Lake Victoria fisheries trends and aquaculture development did not stop the collapse of native fisheries. The successfully introduced Nile perch (Lates niloticus) has shown signs of overexploitation and aquaculture has again been considered as the option. By reviewing significant trends associated with Nile perch and its feasibility in aquaculture this paper uses Lake Victoria to illustrate ,special interest management' targeting selected species of fish rather than the fisheries. Résumé Les écosystèmes africains où se pratique la pêche intérieure se caractérisent par des schémas de surexploitation, de dégradation environnementale et d'introductions d'espèces exotiques. La complexité et la diversité des habitats aquatiques impliquent que les poissons ne sont, en général, pas distribués de façon uniforme dans une entité aquatique. Pourtant, les divers régimes de gestion des pêcheries tendent à ignorer ce principe élémentaire, présument de conditions uniformes dans une entité aquatique et visent plus les objectifs « souhaités », comme des prises maximales. Le résultat, c'est que l'on ne tient pas compte des limites de l'habitat des poissons et des impacts anthropiques du bassin versant qui influencent la production de poisson. La surexploitation et la dégradation de l'environnement compromettent les bénéfices socio-économiques durables de la pêche, engendrent l'incertitude parmi les investisseurs et font que certains gestionnaires sollicitent plus d'informations dans l'attente que la pêche se redresse avec le temps. L'accès libre à la pêche et le contrôle total des efforts de pêche restent de vrais défis pour les gestionnaires. Les introductions d'espèces exotiques et les fermes piscicoles peuvent augmenter la production, mais ces interventions exigent un engagement solide vis-à-vis des principes écologiques responsables et l'application stricte des mesures de conservation et de co-gestion recommandées pour la pêche. La tendance générale à minimiser les problèmes des efforts de pêche et les autres valeurs et fonctions de l'écosystème, ou à se baser sur des modèles de pêche tempérés jusqu'à ce qu'un nouveau cycle de surexploitation émerge, caractérise de nombreux schémas de gestion de pêche intérieure. L'aquaculture n'est pas une option pour les défis auxquels fait face la gestion de la pêche. L'aquaculture devrait être développée pour augmenter la production de poisson, mais même cette pratique peut avoir des impacts environnementaux négatifs dus à l'échelle et à la façon dont on la pratique. Des décennies d'informations sur les tendances de la pêche et le développement de l'aquaculture dans le lac Victoria n'ont pas empêché l'effondrement de la pêche originale. La perche du Nil (Lates niloticus), introduite avec succès montre des signes de surexploitation et l'aquaculture a de nouveau été envisagée. En passant en revue les tendances significatives liées à la perche du Nil et la faisabilité de son aquaculture, cet article se sert du lac Victoria pour illustrer la « gestion d'intérêt spécial » qui vise des espèces de poissons sélectionnées plutôt que la pêche. [source]


Constructing an Interdisciplinary Flow Regime Recommendation,

JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 5 2010
John M. Bartholow
Bartholow, John M., 2010. Constructing an Interdisciplinary Flow Regime Recommendation. Journal of the American Water Resources Association (JAWRA) 1-15. DOI: 10.1111/j.1752-1688.2010.00461.x Abstract:, It is generally agreed that river rehabilitation most often relies on restoring a more natural flow regime, but credibly defining the desired regime can be problematic. I combined four distinct methods to develop and refine month-by-month and event-based flow recommendations to protect and partially restore the ecological integrity of the Cache la Poudre River through Fort Collins, Colorado. A statistical hydrologic approach was used to summarize the river's natural flow regime and set provisional monthly flow targets at levels that were historically exceeded 75% of the time. These preliminary monthly targets were supplemented using results from three Poudre-specific disciplinary studies. A substrate maintenance flow model was used to better define the high flows needed to flush accumulated sediment from the river's channel and help sustain the riparian zone in this snowmelt-dominated river. A hydraulic/habitat model and a water temperature model were both used to better define the minimum flows necessary to maintain a thriving cool water fishery. The result is a range of recommended monthly flows and daily flow guidance illustrating the advantage of combining a wide range of available disciplinary information, supplemented by judgment based on ecological principles and a general understanding of river ecosystems, in a highly altered, working river. [source]


A Striking Profile: Soil Ecological Knowledge in Restoration Management and Science

RESTORATION ECOLOGY, Issue 4 2008
Mac A. Callaham Jr.
Abstract Available evidence suggests that research in terrestrial restoration ecology has been dominated by the engineering and botanical sciences. Because restoration science is a relatively young discipline in ecology, the theoretical framework for this discipline is under development and new theoretical offerings appear regularly in the literature. In reviewing this literature, we observed an absence of in-depth discussion of how soils, and in particular the ecology of soils, can be integrated into the developing theory of restoration science. These observations prompted us to assess the current role of soil ecological knowledge in restoration research and restoration practice. Although soils are universally regarded as critical to restoration success, and much research has included manipulations of soil variables, we found that better integration of soil ecological principles could still contribute much to the practice of ecosystem restoration. Here we offer four potential points of departure for increased dialog between restoration ecologists and soil ecologists. We hope to encourage the view that soil is a complex, heterogeneous, and vital entity and that adoption of this point of view can positively affect restoration efforts worldwide. [source]


On the Status of Restoration Science: Obstacles and Opportunities

RESTORATION ECOLOGY, Issue 2 2007
Evan Weiher
Abstract Terrestrial restoration ecology is not as well developed as aquatic and wetland restoration. There are several key obstacles to progress in restoration ecology, but these obstacles may also be viewed as opportunities to exploit. One obstacle is demonstration science, or an overreliance on simplistic experiments with few treatment factors and few levels of those factors. Complex, multivariate experiments yield greater insights, especially when teamed with sophisticated methods of data analysis. A second key obstacle is myopic scholarship that has led to little synthesis and weak conceptual theory. A greater awareness of and explicit references to ecological principles will help develop the conceptual basis of restoration science. Where should restoration ecology be headed? We should consider forming partnerships with developers, landscape artists, and industry to do complex, large-scale experiments and make restoration a more common part of everyday life. [source]