Divergence Events (divergence + event)

Distribution by Scientific Domains


Selected Abstracts


Phylogeography and systematics of zebra mussels and related species

MOLECULAR ECOLOGY, Issue 4 2006
GREGORY W. GELEMBIUK
Abstract The genus Dreissena includes two widespread and aggressive aquatic invaders, the zebra mussel, Dreissena polymorpha, and the quagga mussel, Dreissena bugensis. This genus evolved in the Ponto-Caspian Sea basin, characterized by dynamic instability over multiple timescales and a unique evolutionary environment that may predispose to invasiveness. The objectives of this study were to gain insights into the demographic history of Dreissena species in their endemic range, to reconstruct intraspecific phylogeographic relationships among populations, and to clarify systematics of the genus, using DNA sequences from the mitochondrial cytochrome oxidase I (COI) gene. We found four deeply diverged clades within this genus, with a basal split that approximately coincided with the Cretaceous,Tertiary boundary. Divergence events within the four base clades were much more recent, corresponding to geographically disjunct sets of populations, which might represent species complexes. Across all taxa, populations of Dreissena shared a common pattern of genetic signatures indicating historical population bottlenecks and expansions. Haplotype diversity was relatively low in Ponto-Caspian drainages relative to more stable tectonic lakes in Greece, Macedonia, and Turkey. The phylogeographic and demographic patterns in the endemic range of Dreissena might have resulted from vicariance events, habitat instability, and the high fecundity and passive dispersal of these organisms. [source]


Atlantic reef fish biogeography and evolution

JOURNAL OF BIOGEOGRAPHY, Issue 1 2008
S. R. Floeter
Abstract Aim, To understand why and when areas of endemism (provinces) of the tropical Atlantic Ocean were formed, how they relate to each other, and what processes have contributed to faunal enrichment. Location, Atlantic Ocean. Methods, The distributions of 2605 species of reef fishes were compiled for 25 areas of the Atlantic and southern Africa. Maximum-parsimony and distance analyses were employed to investigate biogeographical relationships among those areas. A collection of 26 phylogenies of various Atlantic reef fish taxa was used to assess patterns of origin and diversification relative to evolutionary scenarios based on spatio-temporal sequences of species splitting produced by geological and palaeoceanographic events. We present data on faunal (species and genera) richness, endemism patterns, diversity buildup (i.e. speciation processes), and evaluate the operation of the main biogeographical barriers and/or filters. Results, Phylogenetic (proportion of sister species) and distributional (number of shared species) patterns are generally concordant with recognized biogeographical provinces in the Atlantic. The highly uneven distribution of species in certain genera appears to be related to their origin, with highest species richness in areas with the greatest phylogenetic depth. Diversity buildup in Atlantic reef fishes involved (1) diversification within each province, (2) isolation as a result of biogeographical barriers, and (3) stochastic accretion by means of dispersal between provinces. The timing of divergence events is not concordant among taxonomic groups. The three soft (non-terrestrial) inter-regional barriers (mid-Atlantic, Amazon, and Benguela) clearly act as ,filters' by restricting dispersal but at the same time allowing occasional crossings that apparently lead to the establishment of new populations and species. Fluctuations in the effectiveness of the filters, combined with ecological differences among provinces, apparently provide a mechanism for much of the recent diversification of reef fishes in the Atlantic. Main conclusions, Our data set indicates that both historical events (e.g. Tethys closure) and relatively recent dispersal (with or without further speciation) have had a strong influence on Atlantic tropical marine biodiversity and have contributed to the biogeographical patterns we observe today; however, examples of the latter process outnumber those of the former. [source]


Phylogeographic analysis of Pimoidae (Arachnida: Araneae) inferred from mitochondrial cytochrome c oxidase subunit I and nuclear 28S rRNA gene regions

JOURNAL OF ZOOLOGICAL SYSTEMATICS AND EVOLUTIONARY RESEARCH, Issue 2 2008
Q. Wang
Abstract Using mitochondrial DNA cytochrome c oxidase subunit I and nuclear DNA 28S rRNA data, we explored the phylogenetic relationships of the family Pimoidae (Arachnida: Araneae) and tested the North America to Asia dispersal hypothesis. Sequence data were analysed using maximum parsimony and Bayesian inference. A phylogenetic analysis suggested that vicariance, instead of dispersal, better explained the present distribution pattern of Pimoidae. Times of divergence events were estimated using penalized likelihood method. The dating analysis suggested that the emergence time of Pimoidae was approximately 140 million years ago (Ma). The divergence time of the North American and Asian species of Pimoa was approximately 110 Ma. Our phylogenetic hypothesis supports the current morphology-based taxonomy and suggests that the cave dwelling might have played an important role in the speciation of pimoids in arid areas. Kurzfassung Die verwandtschaftlichen Verhältnisse der Spinnenfamilie Pimoidae (Arachnida: Araneae) wurden mit Hilfe von mtDNA COI und nuDNA 28S rRNA-Daten untersucht und die Ausbreitungshypothese von Nordamerika nach Asien getestet. Sequenzen wurden mit Maximum Parsimonie und Bayesian Inferenz analysiert. Die Analyse zeigte, dass das rezente Verbreitungsmuster der Pimoidae durch Vikarianz besser erklärt wird als durch Ausbreitung. Zeiten für Aufspaltungsereignisse wurden geschätzt mit Hilfe der Bayesischen Molekularen Analyse. Diese legt eine Abspaltung der Pimoidae vor etwa 140 Millionen Jahren nahe. Die Aufspaltung zwischen Nordamerika und Asien hat demzufolge vor 110 Millionen Jahren stattgefunden. Unsere phylogenetische Analyse unterstützt die aktuelle auf Morphologie basierende Taxonomie und zeigt, dass das Höhlenleben eine größere Rolle bei der Speziation in trockenen als in feuchten Gebieten spielte. [source]


Recent evolution of host-associated divergence in the seabird tick Ixodes uriae

MOLECULAR ECOLOGY, Issue 21 2009
FLORENT KEMPF
Abstract Ecological interactions are an important source of rapid evolutionary change and thus may generate a significant portion of novel biodiversity. Such changes may be particularly prevalent in parasites, where hosts can induce strong selection for adaptation. To understand the relative frequency at which host-associated divergences occur, it is essential to examine the evolutionary history of the divergence process, particularly when it is occurring over large geographical scales where both geographical and host-associated isolation may playa part. In this study, we use population genetics and phylogeography to study the evolutionary history of host-associated divergence in the seabird tick Ixodes uriae (Acari, Ixodidae). We compare results from microsatellite markers that reflect more ecological timescales with a conserved mitochondrial gene (COIII) that reflects more ancient divergence events. Population structure based on microsatellites showed clear evidence of host-associated divergence in all colonies examined. However, isolated populations of the same host type did not always group together in overall analyses and the genetic differentiation among sympatric host races was highly variable. In contrast, little host or geographical structure was found for the mitochondrial gene fragment. These results suggest that host race formation in I. uriae is a recent phenomenon, that it may have occurred several times and that local interactions are at different points in the divergence process. Rapid divergence in I. uriae implies a strong interaction with its local host species, an interaction that will alter the ecological dynamics of the system and modify the epidemiological landscape of circulating micropathogens. [source]


Molecular systematics, biogeography and population structure of Neotropical freshwater needlefishes of the genus Potamorrhaphis

MOLECULAR ECOLOGY, Issue 3 2000
N. R. Lovejoy
Abstract Phylogenetic relationships of populations and species within Potamorrhaphis, a genus of freshwater South American needlefishes, were assessed using mitochondrial cytochrome b sequences. Samples were obtained from eight widely distributed localities in the Amazon and Orinoco rivers, and represented all three currently recognized species of Potamorrhaphis. The phylogeny of haplotypes corresponded imperfectly to current morphological species identities: haplotypes from P. guianensis, the most widespread species, did not make up a monophyletic clade. Geography played a strong role in structuring genetic variation: no haplotypes were shared between any localities, indicating restricted gene flow. Possible causes of this pattern include limited dispersal and the effects of current and past geographical barriers. The haplotype phylogeny also showed a complex relationship between fishes from different river basins. Based on the geographical distribution of clades, we hypothesize a connection between the middle Orinoco and Amazon via rivers of the Guianas. More ancient divergence events may have resulted from Miocene alterations of river drainage patterns. We also present limited data for two other Neotropical freshwater needlefish genera: Belonion and Pseudotylosurus. Pseudotylosurus showed evidence of substantial gene flow between distant localities, indicating ecological differences from Potamorrhaphis. [source]


Cross-cultural estimation of the human generation interval for use in genetics-based population divergence studies

AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY, Issue 2 2005
Jack N. Fenner
Abstract The length of the human generation interval is a key parameter when using genetics to date population divergence events. However, no consensus exists regarding the generation interval length, and a wide variety of interval lengths have been used in recent studies. This makes comparison between studies difficult, and questions the accuracy of divergence date estimations. Recent genealogy-based research suggests that the male generation interval is substantially longer than the female interval, and that both are greater than the values commonly used in genetics studies. This study evaluates each of these hypotheses in a broader cross-cultural context, using data from both nation states and recent hunter-gatherer societies. Both hypotheses are supported by this study; therefore, revised estimates of male, female, and overall human generation interval lengths are proposed. The nearly universal, cross-cultural nature of the evidence justifies using these proposed estimates in Y-chromosomal, mitochondrial, and autosomal DNA-based population divergence studies. Am J Phys Anthropol, 2005. © 2005 Wiley-Liss, Inc. [source]


Varying rates of diversification in the genus Melitaea (Lepidoptera: Nymphalidae) during the past 20 million years

BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 2 2009
JULIEN LENEVEU
The influence of Quarternary glacial cycles on the extant diversity of Holarctic species has been intensively studied. It has been hypothesized that palaeoclimatic changes are responsible for divergence events in lineages. A constant improvement in DNA sequencing and modeling methods, as well as palaeoclimatic reconstruction, permit a deeper exploration of general causes of speciation in geological time. In the present study, we sampled, as exhaustively as possible, the butterflies belonging to the genus Melitaea (Lepidoptera: Nymphalidae), which are widely spread in the Palaearctic region. We conducted analyses to assess the phylogeny of the genus and estimated the timing of divergence and the most likely distribution of ancestral populations. The results obtained indicate that the systematics of the genus is in need of revision and that the diversity of the genus has been profoundly shaped by palaeoenvironmental changes during its evolutionary history. The present study also emphasizes that, when employed with caveats, major palaeoenvironmental events could represent very powerful tools for the calibration of the dating of divergences using molecular data. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 97, 346,361. [source]


The phylogeny of the living and fossil Sphenisciformes (penguins)

CLADISTICS, Issue 5 2006
Daniel T. Ksepka
We present the first phylogenetic analysis of the Sphenisciformes that extensively samples fossil taxa. Combined analysis of 181 morphological characters and sequence fragments from mitochondrial and nuclear genes (12S, 16S, COI, cytochrome b, RAG-1) yields a largely resolved tree. Two species of the New Zealand Waimanu form a trichotomy with all other penguins in our result. The much discussed giant penguins Anthropornis and Pachydyptes are placed in two clades near the base of the tree. Stratigraphic and phylogenetic evidence suggest that some lineages of penguins attained very large body size rapidly and early in the clade's evolutionary history. The only fossil taxa that fall inside the crown clade Spheniscidae are fossil species assigned to the genus Spheniscus. Thus, extant penguin diversity is more accurately viewed as the product of a successful radiation of derived taxa than as an assemblage of survivors belonging to numerous lineages. The success of the Spheniscidae may be due to novel feeding adaptations and a more derived flipper apparatus. We offer a biogeographical scenario for penguins that incorporates fossil distributions and paleogeographic reconstructions of the Southern continent's positions. Our results do not support an expansion of the Spheniscidae from a cooling Continental Antarctica, but instead suggest those species that currently breed in that area are the descendants of colonizers from the Subantarctic. Many important divergence events in the clade Spheniscidae can instead be explained by dispersal along the paths of major ocean currents and the emergence of new islands due to tectonic events. © The Willi Hennig Society 2006. [source]