Column Diameter (column + diameter)

Distribution by Scientific Domains


Selected Abstracts


Plasma Sputtering Deposition of PEMFC Porous Carbon Platinum Electrodes,

FUEL CELLS, Issue 2 2008
H. Rabat
Abstract A novel method is proposed to fabricate the active catalytic layers of proton exchange membrane fuel cells (PEMFC). A plasma sputtering technique is used to deposit a porous columnar carbon film (column diameter of 20,nm) followed by the catalyst (platinum) deposition directly on the proton-conducting membrane. The study of Pt diffusion shows that the optimised catalysed layers correspond to low plasma pressure operation (0.5,Pa) below a platinum loading limit of about 90,,g,cm,2. The initial carbon porosity is then maintained and Pt nanoparticles are present in all parts of the carbon layer. A membrane electrode assembly (MEA) is then achieved by alternate depositions of carbon and platinum onto both sides of the membrane. The results show the importance of the porous carbon structure. A significant increase in the catalyst efficiency is observed compared to a commercial fuel cell when measuring open circuit voltage. [source]


The effect of gas-liquid counter-current operation on gas hold-up in bubble columns using electrical resistance tomography,

JOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 9 2010
Haibo Jin
Abstract BACKGROUND: In order to improve the performance of a counter-current bubble column, radial variations of the gas hold-ups and mean hold-ups were investigated in a 0.160 m i.d. bubble column using electrical resistance tomography with two axial locations (Plane 1 and Plane 2). In all experiments the liquid phase was tap water and the gas phase air. The superficial gas velocity was varied from 0.02 to 0.25 m s,1, and the liquid velocity varied from 0 to 0.01 m s,1. The effect of liquid velocity on the distribution of mean hold-ups and radial gas hold-ups is discussed. RESULTS: The gas hold-up profile in a gas,liquid counter-current bubble column was determined by electrical resistance tomography. The liquid velocity slightly influences the mean hold-up and radial hold-up distribution under the selected operating conditions and the liquid flow improves the transition gas velocity from a homogeneous regime to a heterogeneous regime. Meanwhile, the radial gas hold-up profiles are steeper at the central region of the column with increasing gas velocity. Moreover, the gas hold-up in the centre of the column becomes steeper with increasing liquid velocity. CONCLUSIONS: The value of mean gas hold-ups slightly increases with increasing downward liquid velocity, and more than mean gas hold-ups in batch and co-current operation. According to the experimental results, an empirical correlation for the centreline gas hold-up is obtained based on the effects of gas velocity, liquid velocity, and ratio of axial height to column diameter. The values calculated in this way are in close agreement with experimental data, and compare with literature data on gas hold-ups at the centre of the column. Copyright © 2010 Society of Chemical Industry [source]


The effect of column diameter and bed height on minimum fluidization velocity

AICHE JOURNAL, Issue 9 2010
Akhil Rao
Abstract Experiments show that the minimum fluidization velocity of particles increases as the diameter of the fluidization column is reduced, or if the height of the bed is increased. These trends are shown to be due to the influence of the wall. A new, semicorrelated model is proposed, which incorporates Janssen's wall effects in the calculation of the minimum fluidization velocity. The wall friction opposes not only the bed weight but also the drag force acting on the particles during fluidization. The enhanced wall friction leads to an increase in the minimum fluidization velocity. The model predictions compare favorably to existing correlations and experimental data. © 2010 American Institute of Chemical Engineers AIChE J, 2010 [source]


Analysis of isomeric tropane alkaloids from Schizanthus grahamii by very fast gas chromatography

JOURNAL OF SEPARATION SCIENCE, JSS, Issue 1 2006
Stefan Bieri
Abstract This study presents a very fast GC analysis applied for the baseline separation of isomeric tropane alkaloids extracted from the stem-bark of Schizanthus grahamii (Solanaceae). The work provided a challenging application where isothermal analysis in conjunction with very short narrow bore columns (3 m×100 ,m ID and 1.5 m×50 ,m ID) was particularly suited for the speeding up. Experimental parameters were used in the optimisation steps, including selection of stationary phase, temperature, internal column diameter and optimal practicable gas velocity. Some considerations about sample injection in fast isothermal analysis are also briefly presented. Finally, the investigated approach allowed a very fast baseline separation of four positional and configurational isomers in less than 9 s. [source]


Local Bubble Dynamics and Macroscopic Flow Structure in Bubble Columns with Different Scales

THE CANADIAN JOURNAL OF CHEMICAL ENGINEERING, Issue 6 2003
Wei Chen
Abstract Local bubble behaviours were investigated in three bubble columns with different diameters of 200, 400 and 800 mm. By means of a novel single-tip optical fibre probe employing laser Doppler technique, the local gas holdup, bubble frequency, bubble size and velocity were measured simultaneously at different locations of the columns. Measurements were performed in air-water system at superficial gas velocities up to 90 mm/s. The averaged profiles and instantaneous measurements were analyzed and compared for different columns. The presence of a coherent gross circulation structure spanning the entire column diameter in the larger column rather than a pair of symmetrical circulation cells observed in the smaller columns has been confirmed. Les comportements locaux des bulles ont été étudiés dans trois colonnes à bulles de diamètres différents, soient 200, 400 et 800 mm. Au moyen d'une nouvelle sonde à fibre optique à embout unique employant la technique laser Doppler, des mesures locales de la rétention de gaz, de la fréquence des bulles, de la taille des bulles et de la vitesse ont été effectuées simultanément à différents endroits dans les colonnes. Ces mesures ont été effectuées pour un système air-eau à des vitesses de gaz superficielles atteignant 90 mm/s. Les profils moyennés et les mesures instantanées ont été analysés puis comparés pour différentes colonnes. La présence d'une structure de circulation unique cohérente occupant tout le diamètre de la colonne dans la colonne la plus large plutôt qu'une paire de cellules de circulation symétriques observées dans les colonnes plus petites est confirmée. [source]


Gas hold-up in bubble columns: Operation with concentrated slurries versus high viscosity liquid

THE CANADIAN JOURNAL OF CHEMICAL ENGINEERING, Issue 3 2000
Rajamani Krishna
Abstract The hydrodynamics of bubble columns with concentrated slurries of paraffin oil (density, ,L = 790 kg/m3; viscosity, ,L = 0.0029 Pa·s; surface tension, , = 0.028 N·m1) containing silica particles (mean particle diameter dp = 38 ,m) has been studied in columns of three different diameters, 0.1, 0.19 and 0.38 m. With increasing particle concentration, the total gas hold-up decreases significantly. This decrease is primarily caused by the destruction of the small bubble population. The hold-up of large bubbles is practically independent of the slurry concentration. The measured gas hold-up with the 36% v paraffin oil slurry shows remarkable agreement with the corresponding data obtained with Tellus oil (,L = 862 kg/m3; ,L = 0.075 Pa·s; , = 0.028 N·m,1) as the liquid phase. Dynamic gas disengagement experiments confirm that the gas dispersion in Tellus oil also consists predominantly of large bubbles. The large bubble hold-up is found to decrease significantly with increasing column diameter. A model is developed for estimation of the large bubble gas hold-up by introduction of an wake-acceleration factor into the Davies-Taylor-Collins relation (Collins, 1967), describing the influence of the column diameter on the rise velocity of an isolated spherical cap bubble. On a étudié dans des colonnes de trois diamètres différents, soient 0,1, 0,19 et 0,38 m, l'hydrodynamique de colonnes à bulles avec des suspensions concentrées d'huile de paraffine (masse volumique, ,L = 790 kg/m3; viscosité, ,L = 0,0029 Pa·s; tension de surface, , = 0,028 N·m,1) contenant des particules de silice (diamètre moyen des particules dp = 38 ,m). Lorsque la concentration de particules augmente, la rétention de gaz totale diminue considérablement. Cette diminution est principalement due à la destruction de la population de petites bulles. La rétention de grosses bulles est pratiquement indépendante de la concentration des suspensions. La rétention de gaz mesurée avec la suspension d'huile paraffine à 36% volumique concorde remarquablement bien avec les données correspondantes obtenues avec de l'huile de Tellus (,L = 86 kg/m,3; ,L = 0,075 Pa·s; , = 0,028 N·m,1) comme phase liquide. Des expériences de dégagement de gaz dynamiques confirment que la dispersion dans l'huile de Tellus se compose essentiellement de grosses bulles. On a trouvé que la rétention de grosses bulles diminuait de manière significative avec l'augmentation du diamètre de la colonne. On a mis au point un modèle pour l'estimation de la rétention de grosses bulles de gaz par l'introduction d'un facteur d'accélération dans le sillage dans la relation de Davies-Taylor-Collins (Collins, 1967), décrivant l'influence du diamètre de colonne sur la vitesse de montée d'une bulle à t,te sphérique isolée. [source]