CO2 Elevation (co2 + elevation)

Distribution by Scientific Domains

Selected Abstracts

Increase of atmospheric CO2 promotes phytoplankton productivity

Peter Schippers
Abstract It is usually thought that unlike terrestrial plants, phytoplankton will not show a significant response to an increase of atmospheric CO2. Here we suggest that this view may be biased by a neglect of the effects of carbon (C) assimilation on the pH and the dissociation of the C species. We show that under eutrophic conditions, productivity may double as a result of doubling of the atmospheric CO2 concentration. Although in practice productivity increase will usually be less, we still predict a productivity increase of up to 40% in marine species with a low affinity for bicarbonate. In eutrophic freshwater systems doubling of atmospheric CO2 may result in an increase of the productivity of more than 50%. Freshwaters with low alkalinity appeared to be very sensitive to atmospheric CO2 elevation. Our results suggest that the aquatic C sink may increase more than expected, and that nuisance phytoplankton blooms may be aggravated at elevated atmospheric CO2 concentrations. [source]

Responses of dryland soil respiration and soil carbon pool size to abrupt vs. gradual and individual vs. combined changes in soil temperature, precipitation, and atmospheric [CO2]: a simulation analysis

Abstract With the large extent and great amount of soil carbon (C) storage, drylands play an important role in terrestrial C balance and feedbacks to climate change. Yet, how dryland soils respond to gradual and concomitant changes in multiple global change drivers [e.g., temperature (Ts), precipitation (Ppt), and atmospheric [CO2] (CO2)] has rarely been studied. We used a process-based ecosystem model patch arid land simulator to simulate dryland soil respiration (Rs) and C pool size (Cs) changes to abrupt vs. gradual and single vs. combined alterations in Ts, Ppt and CO2 at multiple treatment levels. Results showed that abrupt perturbations generally resulted in larger Rs and had longer differentiated impacts than did gradual perturbations. Rs was stimulated by increases in Ts, Ppt, and CO2 in a nonlinear fashion (e.g., parabolically or asymptotically) but suppressed by Ppt reduction. Warming mainly stimulated heterotrophic Rs (i.e., Rh) whereas Ppt and CO2 influenced autotrophic Rs (i.e., Ra). The combined effects of warming, Ppt, and CO2 were nonadditive of primary single-factor effects as a result of substantial interactions among these factors. Warming amplified the effects of both Ppt addition and CO2 elevation whereas Ppt addition and CO2 elevation counteracted with each other. Precipitation reduction either magnified or suppressed warming and CO2 effects, depending on the magnitude of factor's alteration and the components of Rs (Ra or Rh) being examined. Overall, Ppt had dominant influence on dryland Rs and Cs over Ts and CO2. Increasing Ppt individually or in combination with Ts and CO2 benefited soil C sequestration. We therefore suggested that global change experimental studies for dryland ecosystems should focus more on the effects of precipitation regime changes and the combined effects of Ppt with other global change factors (e.g., Ts, CO2, and N deposition). [source]

Consequences of simultaneous elevation of carbon dioxide and temperature for plant,herbivore interactions: a metaanalysis

Abstract The effects of elevated carbon dioxide on plant,herbivore interactions have been summarized in a number of narrative reviews and metaanalyses, while accompanying elevation of temperature has not received sufficient attention. The goal of our study is to search, by means of metaanalysis, for a general pattern in responses of herbivores, and plant characteristics important for herbivores, to simultaneous experimental increase of carbon dioxide and temperature (ECET) in comparison with both ambient conditions and responses to elevated CO2 (EC) and temperature (ET) applied separately. Our database includes 42 papers describing studies of 31 plant species and seven herbivore species. Nitrogen concentration and C/N ratio in plants decreased under both EC and ECET treatments, whereas ET had no significant effect. Concentrations of nonstructural carbohydrates and phenolics increased in EC, decreased in ET and did not change in ECET treatments, whereas terpenes did not respond to EC but increased in both ET and ECET; leaf toughness increased in both EC and ECET. Responses of defensive secondary compounds to treatments differed between woody and green tissues as well as between gymnosperm and angiosperm plants. Insect herbivore performance was adversely affected by EC, favoured by ET, and not modified by ECET. Our analysis allowed to distinguish three types of relationships between CO2 and temperature elevation: (1) responses to EC do not depend on temperature (nitrogen, C/N, leaf toughness, phenolics in angiosperm leaves), (2) responses to EC are mitigated by ET (sugars and starch, terpenes in needles of gymnosperms, insect performance) and (3) effects emerge only under ECET (nitrogen in gymnosperms, and phenolics and terpenes in woody tissues). This result indicates that conclusions of CO2 elevation studies cannot be directly extrapolated to a more realistic climate change scenario. The predicted negative effects of CO2 elevation on herbivores are likely to be mitigated by temperature increase. [source]

Effects of elevated CO2 on the size structure in even-aged monospecific stands of Chenopodium album

Abstract To investigate the effect of elevated CO2 on the size inequality and size structure, even-aged monospecific stands of an annual, Chenopodium album, were established at ambient and doubled CO2 with high and low nutrient availabilities in open top chambers. The growth of individual plants was monitored non-destructively every week until flowering. Elevated CO2 significantly enhanced plant growth at high nutrients, but did not at low nutrients. The size inequality expressed as the coefficient of variation tended to increase at elevated CO2. Size structure of the stands was analyzed by the cumulative frequency distribution of plant size. At early stages of plant growth, CO2 elevation benefited all individuals and shifted the whole size distribution of the stand to large size classes. At later stages, dominant individuals were still larger at elevated than at ambient CO2, but the difference in small subordinate individuals between two CO2 levels became smaller. Although these tendencies were found at both nutrient availabilities, difference in size distribution between CO2 levels was larger at high nutrients. The CO2 elevation did not significantly enhance the growth rate as a function of plant size except for the high nutrient stand at the earliest stage, indicating that the higher biomass at elevated CO2 at later stages in the high nutrient stand was caused by the larger size of individuals at the earliest stage. Thus the effect of elevated CO2 on stand structure and size inequality strongly depended on the growth stage and nutrient availabilities. [source]