Citrate Synthase (citrate + synthase)

Distribution by Scientific Domains

Terms modified by Citrate Synthase

  • citrate synthase activity

  • Selected Abstracts


    Signs of critical illness polyneuropathy and myopathy can be seen early in the ICU course

    ACTA ANAESTHESIOLOGICA SCANDINAVICA, Issue 6 2009
    K. AHLBECK
    Background: Critical illness polyneuropathy and myopathy (CIPNM) is recognized as a common condition that develops in the intensive care unit (ICU). It may lead to a prolonged hospital stay with subsequent increased ICU and hospital costs. Knowledge of predisposing factors is insufficient and the temporal pattern of CIPNM has not been well described earlier. This study investigated patients with critical illness in need of prolonged mechanical ventilation, describing comprehensively the time course of changes in muscle and nerve neurophysiology, histology and mitochondrial oxidative function. Methods: Ten intensive care patients were investigated 4, 14 and 28 days after the start of mechanical ventilation. Laboratory tests, neurophysiological examination, muscle biopsies and clinical examinations were performed. Neurophysiological criteria for CIPNM were noted and measurements for mitochondrial content, mitochondrial respiratory enzymes and markers of oxidative stress were performed. Results: While all patients showed pathologic changes in neurophysiologic measurements, only patients with sepsis and steroid treatment (5/5) fulfilled the CIPNM criteria. The presence of CIPNM did not affect the outcome, and the temporal pattern of CIPNM was not uniform. All CIP changes occurred early in ICU care, while myopathy changes appeared somewhat later. Citrate synthase was decreased between days 4 and 14, and mitochondrial superoxide dismutase was increased. Conclusion: With comprehensive examination over time, signs of CIPNM can be seen early in ICU course, and appear more likely to occur in patients with sepsis and corticosteroid treatment. [source]


    Decreased activities of mitochondrial respiratory chain complexes in non-mitochondrial respiratory chain diseases

    DEVELOPMENTAL MEDICINE & CHILD NEUROLOGY, Issue 2 2006
    Joannie Hui MBBS
    The aim of this study was to illustrate the difficulties in establishing a diagnosis of mitochondrial respiratory chain (MRC) disorders based on clinical grounds in combination with intermediate activities of the MRC enzyme complexes. We reviewed retrospectively all medical and laboratory records of patients initially considered likely to have MRC disorders on clinical grounds, and subsequently diagnosed with other disorders (n=20; 11 males, 9 females). Data were retrieved from hospital records, referral letters, and results of enzymatic analysis at a reference laboratory. Clinical symptoms included developmental delay, epilepsy, hypotonia, movement disorder, spastic quadriplegia, tetany, microcephaly, visual problems, carpopedal spasms, dysmorphism, hearing loss, muscle weakness and rhabdomyolysis, and fulminant hepatitis. Blood and cerebrospinal fluid lactate levels were elevated in 13/20 and 9/20 respectively. One or more MRC complex activities (expressed as ratios relative to citrate synthase and/or complex II activity) were less than 50% of control mean activity in 11/20 patients (including patients with deficiencies of pyruvate dehydrogenase complex, pantothenate kinase, holocarboxylase synthetase, long-chain hydroxy acyl-CoA dehydrogenase, molybdenum co-factor, and neonatal haemochromatosis). One patient had a pattern suggestive of mitochondrial proliferation. We conclude that intermediate results of MRC enzymes should be interpreted with caution and clinicians should be actively looking for other underlying diagnoses. [source]


    Hydrocarbon-induced changes to metabolic and detoxification enzymes of the Australian crimson-spotted rainbowfish (Melanotaenia fluviatilis)

    ENVIRONMENTAL TOXICOLOGY, Issue 1 2003
    Carmel A. Pollino
    Abstract The toxicity of petroleum hydrocarbons to marine aquatic organisms has been widely investigated; however, the effects on freshwater environments have largely been ignored. Selected biomarkers were measured in a freshwater species, the crimson-spotted rainbowfish (Melanotaenia fluviatilis). Fish were exposed to either a water-accommodated fraction (WAF) of crude oil or a dispersed crude oil water-accommodated fraction (DCWAF) for 3 days and were depurated for 14 days. Generally, biomarkers were altered following the short-term exposures but recovered after 14 days of depuration. Metabolic enzymes measured in gill tissue were citrate synthase and lactate dehydrogenase (LDH). As a result of WAF and DCWAF exposures, citrate synthase and LDH activities increased. Enzyme activities returned to control levels following depuration. Subsequent to the WAF exposure, hepatic ethoxyresorufin- O -deethylase (EROD) activity levels were higher than controls and they returned to control levels during depuration. For the DCWAF exposure, EROD was induced by a TPH (total petroleum hydrocarbons) concentration of 14.5 mg/L; however, after depuration the 14.5 mg/L TPH group had lower EROD activity than did controls. There were no changes in liver- to body-weight ratios or the histopathological organization of gill or liver tissues. As the majority of biomarkers returned to control levels after 14 days of depuration, rainbowfish were able to recover from short-term exposures to crude oil and dispersed crude oil. 2003 Wiley Periodicals, Inc. Environ Toxicol 18: 21,28, 2003. [source]


    Exercise training in late middle-aged male Fischer 344 Brown Norway F1-hybrid rats improves skeletal muscle aerobic function

    EXPERIMENTAL PHYSIOLOGY, Issue 7 2008
    Andrew C. Betik
    The Fischer 344 Brown Norway F1-hybrid (F344BN) rat has become an increasingly popular and useful strain for studying age-related declines in skeletal muscle function because this strain lives long enough to experience significant declines in muscle mass. Since exercise is often considered a mechanism to combat age-related declines in muscle function, determining the utility of this strain of rat for studying the effects of exercise on the ageing process is necessary. The purpose of this study was to evaluate the plasticity of skeletal muscle aerobic function in late middle-aged male rats following 7 weeks of treadmill exercise training. Training consisted of 60 min per day, 5 days per week with velocity gradually increasing over the training period according to the capabilities of individual rats. The final 3 weeks involved 2 min high-intensity intervals to increase the training stimulus. We used in situ skeletal muscle aerobic metabolic responses and in vitro assessment of muscle mitochondrial oxidative capacity to describe the adaptations of aerobic function from the training. Training increased running endurance from 11.3 0.6 to 15.5 0.8 min, an improvement of ,60%. Similarly, distal hindlimb muscles from trained rats exhibited a higher maximal oxygen consumption in situ (23.2 1.3 versus 19.7 0.8 ,mol min,1 for trained versus sedentary rats, respectively) and greater citrate synthase and complex IV enzyme activities in gastrocnemius (29 and 19%, respectively) and plantaris muscles (24 and 28%, respectively) compared with age-matched sedentary control animals. Our results demonstrate that skeletal muscles from late middle-aged rats adapt to treadmill exercise by improving skeletal muscle aerobic function and mitochondrial enzyme activities. This rat strain seems suitable for further investigations using exercise as an intervention to combat ageing-related declines of skeletal muscle aerobic function. [source]


    Clenbuterol antagonizes glucocorticoid-induced atrophy and fibre type transformation in mice

    EXPERIMENTAL PHYSIOLOGY, Issue 1 2004
    Maria Antonietta Pellegrino
    Beta-agonists and glucocorticoids are frequently coprescribed for chronic asthma treatment. In this study the effects of 4 week treatment with beta-agonist clenbuterol (CL) and glucocorticoid dexamethasone (DEX) on respiratory (diaphragm and parasternal) and limb (soleus and tibialis) muscles of the mouse were studied. Myosin heavy chain (MHC) distribution, fibres cross sectional area (CSA), glycolytic (phosphofructokinase, PFK; lactate dehydrogenase, LDH) and oxidative enzyme (citrate synthase, CS; cytochrome oxidase, COX) activities were determined. Muscle samples were obtained from four groups of adult C57/B16 mice: (1) Control (2) Mice receiving CL (CL, 1.5 mg kg,1 day,1 in drinking water) (3) Mice receiving DEX (DEX, 5.7 mg kg,1 day,1s.c.) (4) Mice receiving both treatments (DEX + CL). As a general rule, CL and DEX showed opposite effects on CSA, MHC distribution, glycolytic and mitochondrial enzyme activities: CL alone stimulated a slow-to-fast transition of MHCs, an increase of PFK and LDH and an increase of muscle weight and fibre CSA; DEX produced an opposite (fast-to-slow transition) change of MHC distribution, a decrease of muscle weight and fibre CSA and in some case an increase of CS. The response varied from muscle to muscle with mixed muscles, as soleus and diaphragm, being more responsive than fast muscles, as tibialis and parasternal. In combined treatments (DEX + CL), the changes induced by DEX or CL alone were generally minimized: in soleus, however, the effects of CL predominated over those of DEX, whereas in diaphragm DEX prevailed over CL. Taken together the results suggest that CL might counteract the unwanted effects on skeletal muscles of chronic treatment with glucocorticoids. [source]


    Functional characterization of artemin, a ferritin homolog synthesized in Artemia embryos during encystment and diapause

    FEBS JOURNAL, Issue 4 2007
    Tao Chen
    Oviparously developing embryos of the crustacean Artemia franciscana encyst and enter diapause, exhibiting a level of stress tolerance seldom seen in metazoans. The extraordinary stress resistance of encysted Artemia embryos is thought to depend in part on the regulated synthesis of artemin, a ferritin superfamily member. The objective of this study was to better understand artemin function, and to this end the protein was synthesized in Escherichia coli and purified to apparent homogeneity. Purified artemin consisted of oligomers approximately 700 kDa in molecular mass that dissociated into monomers and a small number of dimers upon SDS/PAGE. Artemin inhibited heat-induced aggregation of citrate synthase in vitro, an activity characteristic of molecular chaperones and shown here to be shared by apoferritin and ferritin. This is the first report that apoferritin/ferritin may protect cells from stress other than by iron sequestration. Stably transfected mammalian cells synthesizing artemin were more resistant to heat and H2O2 than were cells transfected with vector only, actions also shared by molecular chaperones such as the small heat shock proteins. The data indicate that artemin is a structurally modified ferritin arising either from a common ancestor gene or by duplication of the ferritin gene. Divergence, including acquisition of a C-terminal peptide extension and ferroxidase center modification, eliminated iron sequestration, but chaperone activity was retained. Therefore, because artemin accumulates abundantly during development, it has the potential to protect embryos from stress during encystment and diapause without adversely affecting iron metabolism. [source]


    Chaperone activity of recombinant maize chloroplast protein synthesis elongation factor, EF-Tu

    FEBS JOURNAL, Issue 18 2004
    Damodara Rao
    The protein synthesis elongation factor, EF-Tu, is a protein that carries aminoacyl-tRNA to the A-site of the ribosome during the elongation phase of protein synthesis. In maize (Zea mays L) this protein has been implicated in heat tolerance, and it has been hypothesized that EF-Tu confers heat tolerance by acting as a molecular chaperone and protecting heat-labile proteins from thermal aggregation and inactivation. In this study we investigated the effect of the recombinant precursor of maize EF-Tu (pre-EF-Tu) on thermal aggregation and inactivation of the heat-labile proteins, citrate synthase and malate dehydrogenase. The recombinant pre-EF-Tu was purified from Escherichia coli expressing this protein, and mass spectrometry confirmed that the isolated protein was indeed maize EF-Tu. The purified protein was capable of binding GDP (indicative of protein activity) and was stable at 45 C, the highest temperature used in this study to test this protein for possible chaperone activity. Importantly, the recombinant maize pre-EF-Tu displayed chaperone activity. It protected citrate synthase and malate dehydrogenase from thermal aggregation and inactivation. To our knowledge, this is the first observation of chaperone activity by a plant/eukaryotic pre-EF-Tu protein. The results of this study support the hypothesis that maize EF-Tu plays a role in heat tolerance by acting as a molecular chaperone and protecting chloroplast proteins from thermal aggregation and inactivation. [source]


    A hydrophobic segment within the C-terminal domain is essential for both client-binding and dimer formation of the HSP90-family molecular chaperone

    FEBS JOURNAL, Issue 1 2003
    Shin-ichi Yamada
    The , isoform of human 90-kDa heat shock protein (HSP90,) is composed of three domains: the N-terminal (residues 1,400); middle (residues 401,615) and C-terminal (residues 621,732). The middle domain is simultaneously associated with the N- and C-terminal domains, and the interaction with the latter mediates the dimeric configuration of HSP90. Besides one in the N-terminal domain, an additional client-binding site exists in the C-terminal domain of HSP90. The aim of the present study is to elucidate the regions within the C-terminal domain responsible for the bindings to the middle domain and to a client protein, and to define the relationship between the two functions. A bacterial two-hybrid system revealed that residues 650,697 of HSP90, were essential for the binding to the middle domain. An almost identical region (residues 657,720) was required for the suppression of heat-induced aggregation of citrate synthase, a model client protein. Replacement of either Leu665-Leu666 or Leu671-Leu672 to Ser-Ser within the hydrophobic segment (residues 662,678) of the C-terminal domain caused the loss of bindings to both the middle domain and the client protein. The interaction between the middle and C-terminal domains was also found in human 94-kDa glucose-regulated protein. Moreover, Escherichia coli HtpG, a bacterial HSP90 homologue, formed heterodimeric complexes with HSP90, and the 94-kDa glucose-regulated protein through their middle-C-terminal domains. Taken together, it is concluded that the identical region including the hydrophobic segment of the C-terminal domain is essential for both the client binding and dimer formation of the HSP90-family molecular chaperone and that the dimeric configuration appears to be similar in the HSP90-family proteins. [source]


    Leptin stimulates uncoupling protein-2 mRNA expression and Krebs cycle activity and inhibits lipid synthesis in isolated rat white adipocytes

    FEBS JOURNAL, Issue 19 2000
    Rolando B. Ceddia
    The treatment of rats and mice with leptin causes dramatic body fat reduction and in some cases even disappearance of fat tissue. Here, we report the effects of leptin (10 and 100 ngmL,1) on isolated rat adipocytes maintained for 15 h in culture. Leptin decreased the incorporation of acetate into total lipids by 30%. A reduction in this incorporation (42%) was still observed after the leptin-cultivated adipocytes were exposed to a supra-physiological insulin concentration (10 000 UmL,1). On the other hand, leptin increased acetate degradation by 69% and the maximal activity of citrate synthase by 50% in isolated adipocytes. It also increased oleate degradation by 35 and 50% at concentrations of 10 and 100 ngmL,1, respectively. Eventually, leptin upregulated the uncoupling protein-2 (UCP2) mRNA level by 63% and had no effect on uncoupling protein-3 (UCP3) mRNA in isolated adipocytes. The upregulation of UCP2 mRNA might have contributed to the stimulation of acetate and fatty acid degradation by leptin. The peripheral effects of leptin observed in this study are in line with the general energy dissipating role postulated for this hormone and for UCP2. They suggest mechanisms by which adipocytes regulate their fat content by an autocrine pathway without the participation of the central nervous system. [source]


    Single nucleotide polymorphisms in succinate dehydrogenase subunits and citrate synthase genes: association results for impaired spermatogenesis

    INTERNATIONAL JOURNAL OF ANDROLOGY, Issue 3 2007
    Sandra Bonache
    Abstract Evaluation of the possible implication of the SDHA, SDHB, SDHC, SDHD and CS genes in non-obstructive male infertility was performed on the basis that sperm concentration in the ejaculate has been previously correlated with nuclear-encoded mitochondrial enzyme activities (the four subunits of succinate dehydrogenase/complex II of the respiratory chain and citrate synthase). We performed an exhaustive analysis of the five genes for the presence of sequence variants that could be associated with impairment of sperm production. blastn searches in the genomic sequence NCBI database evidenced the presence of highly homologous sequences elsewhere on the genome that can interfere with polymerase chain reaction experiments. Therefore, a careful design of the analytical strategy to search for sequence variants was performed. In this report, we provide primer sequences that allowed selective amplification of coding and immediate flanking regions of the five genes. Fifty-five sequence variations in the five genes were identified in infertile and normozoospermic fertile individuals as controls and only one of them (SDHA c.456+32G>A) showed significant genotype association with impairment of sperm production. Moreover, new single nucleotide polymorphisms identified should be useful in future association studies for other human diseases related to nuclear-encoded genes, leading to mitochondrial respiratory chain activity impairment revealing the physiological role of these genes. [source]


    Regional specialization of rat quadriceps myosin heavy chain isoforms occurring in distal to proximal parts of middle and deep regions is not mirrored by citrate synthase activity

    JOURNAL OF ANATOMY, Issue 1 2007
    Tertius Abraham Kohn
    Abstract Myosin heavy chain (MHC) isoform content and citrate synthase (CS) activities were measured in the Quadriceps femoris (QF) muscle of 18 female rats. The muscle group was divided into superficial, middle and deep, distal, central and proximal parts. MHC IIb and IIx were more abundant in superficial regions (P < 0.05) with low CS activities compared with deeper parts. The deeper parts expressed all four isoforms (MHC IIb, MHC IIx, MHC IIa and MHC I), with a concomitantly higher CS activity. MHC I, MHC IIa and MHC IIb isoform content varied significantly along the length of the deep regions. Only MHC IIb and CS activity in the proximal middle part correlated (negatively) with each other. This study showed that the QF has regional specialization and that standardization of sampling site is important. Furthermore, CS activity and MHC isoforms are only loosely associated, or not at all. [source]


    Analysis of the factors related with mate choice and reproductive success in male three-spined sticklebacks

    JOURNAL OF FISH BIOLOGY, Issue 5 2000
    E. R. Cubillos
    Territorial three-spined sticklebacks moved 53 times as far as non-territorial males in 2 min (P < 0001) and spent 111 times longer in aggression in the pools (P< 0001). Territorial males had slightly higher condition factors than non-territorial males. Condition factor was correlated positively with the gonad mass (P< 0006), carotenoid concentration (P< 0006) and the activity of CS in the axial muscle (P< 005) and lactate dehydrogenase (LDH) in pectoral muscle (P < 0003). The male traits best correlated positively with female mate choice were courtship effort (P< 0001), coloration (P< 0003) and initial condition (P< 0025). Courtship behaviour was related to intestine mass (P< 0018), axial (P< 0028) and pectoral muscle citrate synthase (CS) activity (P< 0047); coloration was related to gonad mass (P< 0037). These muscle enzymes may be involved in ATP generation for sustained activities or in recuperation between bouts of burst activity. Females that choose to mate with assiduously courting males which bear higher CS levels may be choosing individuals that show honestly their good condition and capacity to accomplish reproductive tasks. [source]


    Muscle mitochondrial activity increases rapidly after an endotoxin challenge in human volunteers

    ACTA ANAESTHESIOLOGICA SCANDINAVICA, Issue 3 2009
    K. FREDRIKSSON
    Background: Mitochondrial derangements in muscle of patients suffering from sepsis have been established in several studies and have been related to muscle dysfunction and organ failure. It is not possible to study the early phase of sepsis in patients; therefore, we used a human endotoxaemia model to study the effect of early sepsis on muscle mitochondria. Methods: Seven healthy male volunteers received a standardised endotoxin challenge. Muscle biopsies were obtained immediately before the challenge, and at 2 and 4 h following the endotoxin challenge. The muscle biopsies were analysed for maximal activities of citrate synthase and complexes I and IV of the respiratory chain. In addition, total and mitochondrial superoxide dismutase (SOD) activities were analysed. The concentrations of ATP, creatine phosphate and lactate were analysed to assess the cellular energy status. Total and phosphorylated AMP-activated protein kinase (AMPK-P), a key regulator in intracellular energy metabolism, was measured. Results: Activities of citrate synthase and complex I were significantly increased 2 h after the endotoxin challenge. SOD activities were unaffected by the endotoxin challenge. No changes in ATP, creatine phosphate or lactate were observed. Neither total nor AMPK-P changed. Conclusions: An endotoxin challenge given to healthy volunteers rapidly increases mitochondrial enzyme activity in skeletal muscle. The results of this human model indicate that possibly early during sepsis, mitochondrial activity might be increased in contrast to what has been shown in the later phases of sepsis. It is possible that this early activation leads to exhaustion of the mitochondria and a decreased function later during sepsis. [source]


    Pinealectomy reduces hepatic and muscular glycogen content and attenuates aerobic power adaptability in trained rats

    JOURNAL OF PINEAL RESEARCH, Issue 1 2007
    Cristina das Neves Borges-Silva
    Abstract:, The current study emphasizes the crucial role of the pineal gland on the effects of chronic training in different tissues focusing on carbohydrate metabolism. We investigated the maximal oxygen uptake (aerobic power), muscle and liver glycogen content, and also the enzymes involved in the carbohydrate metabolism of rat adipose tissue. Pinealectomized and sham-operated adult male Wistar rats were distributed into four groups: pinealectomized (PINX) untrained, pinealectomized trained, control untrained and control trained. The maximal oxygen uptake capability was assayed before and after the training protocol by indirect open circuit calorimetry. The rats were killed after 8 wk of training. Blood samples were collected for glucose and insulin determinations. The glycogen content was assayed in the liver and muscle. Maximal activities of epididymal adipose tissue enzymes (hexokinase, pyruvate kinase, lactate dehydrogenase, citrate synthase and malic enzyme) as well as adipocyte size were determined. The exercise training in control animals promoted an increase in the aerobic power and in liver glycogen content but caused a reduction in the malic enzyme activity in adipose tissue. However, PINX trained animals, in contrast to trained controls, showed a decrease in the aerobic power and in liver and muscle glycogen content, as well as an increase in the activity of the adipocyte enzymes involved in carbohydrate metabolism. In conclusion, these data show that the pineal gland integrity is necessary for the homeostatic control of energy metabolism among adipose, muscle and hepatic tissues. The pinealectomized animals showed alterations in adaptive responses of the maximal oxygen uptake to training. Therefore, the pineal gland must be considered an influential participant in the complex adaptation to exercise and is involved in the improvement of endurance capacity. [source]


    Proteomic Analysis Demonstrates Adolescent Vulnerability to Lasting Hippocampal Changes Following Chronic Alcohol Consumption

    ALCOHOLISM, Issue 1 2009
    Garth A. Hargreaves
    Background:, Excessive teenage alcohol consumption is of great concern because alcohol may adversely alter the developmental trajectory of the brain. The aim of the present study was to assess whether chronic intermittent alcohol intake during the adolescent period alters hippocampal protein expression to a greater extent than during adulthood. Methods:, Adolescent [postnatal day (PND) 27] and adult (PND 55) male Wistar rats were given 8 hours daily access to beer (4.44% ethanol v/v) in addition to ad libitum food and water for 4 weeks. From a large subject pool, subgroups of adolescent and adult rats were selected that displayed equivalent alcohol intake (average of 6.1 g/kg/day ethanol). The 4 weeks of alcohol access were followed by a 2-week alcohol-free washout period after which the hippocampus was analyzed using 2-DE proteomics. Results:, Beer consumption by the adult group resulted in modest hippocampal changes relative to alcohol nave adult controls. The only changes observed were an up-regulation of citrate synthase (a precursor to the Krebs cycle) and fatty acid binding protein (which facilitates fatty acid metabolism). In contrast, adolescent rats consuming alcohol showed more widespread hippocampal changes relative to adolescent controls. These included an increase in cytoskeletal protein T-complex protein 1 subunit epsilon (TCP-1) and a decrease in the expression of 10 other proteins, including glyceraldehyde-3-phosphate dehydrogenase (GAPDH), triose phosphate isomerise, alpha-enolase, and phosphoglycerate kinase 1 (all involved in glycolysis); glutamate dehydrogenase 1 (an important regulator of glutamate); methylmalonate-semialdehyde dehydrogenase (involved in aldehyde detoxification); ubiquitin carboxyl-terminal hydrolase isozyme L1 (a regulator of protein degradation); and synapsin 2 (involved in synaptogenesis and neurotransmitter release). Conclusions:, These results suggest the adolescent hippocampus is more vulnerable to lasting proteomic changes following repeated alcohol exposure. The proteins most affected include those related to glycolysis, glutamate metabolism, neurodegeneration, synaptic function, and cytoskeletal structure. [source]


    Reciprocal diurnal changes of phosphoenolpyruvate carboxylase expression and cytosolic pyruvate kinase, citrate synthase and NADP-isocitrate dehydrogenase expression regulate organic acid metabolism during nitrate assimilation in tobacco leaves

    PLANT CELL & ENVIRONMENT, Issue 11 2000
    W.-R. Scheible
    ABSTRACT Diurnal changes of transcript levels for key enzymes in nitrate and organic acid metabolism and the accompanying changes of enzyme activities and metabolite levels were investigated in nitrogen-sufficient wild-type tobacco, in transfomants with decreased expression of nitrate reductase, and in nitrate-deficient wild-type tobacco. (i) In nitrogen-sufficient wild-type plants, transcript levels for nitrate reductase (NR, EC 1.6.6.1), nitrite reductase (NIR, EC 1.7.7.1) and phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31) were high at the end of the night and decreased markedly during the light period. The levels of these three transcripts were increased and the diurnal changes were damped in genotypes with decreased expression of nitrate reductase. The levels of these transcripts were very low in nitrate-limited wild-type plants, except for a small rise after irrigation with 02 mM nitrate. (ii) The levels of the transcripts for cytosolic pyruvate kinase (PK, EC 2.7.1.40), mitochondrial citrate synthase (CS, EC 4.1.3.7) and NADP-isocitrate dehydrogenase (NADP-ICDH, EC 1.1.1.42) were highest at the end of the light period and beginning of the night. These three transcripts increase and the diurnal changes were damped in genotypes with decreased expression of NR. (iii) The diurnal changes of transcript levels were accompanied by changes in the activities of the encoded enzymes. The activities of NR and PEPC were highest in the early part of the light period, whereas the activities of PK and NADP-ICDH were highest later in the light period and during the first part of the night and CS activity was highest at the end of the night. Activity of PEPC, PK, CS and NADP-ICDH increased and the diurnal changes were damped in genotypes with low expression of NR. Activity of all four enzymes decreased in nitrate-limited wild-type plants. (iv) In the light, malate accumulated, citrate decreased, and about 30% of the assimilated nitrate accumulated temporarily as glutamine, ammonium, glycine and serine. These changes were reversed during the night. (v) It is proposed that the diurnal changes of expression facilitate preferential synthesis of malate to act as a counter-anion for pH regulation during the first part of the light period when NR activity is high, and preferential synthesis of 2-oxoglutarate to act as a nitrogen acceptor later in the day when large amounts of nitrogen have accumulated in ammonium, glutamine and other amino acids including glycine in the photorespiration pathway, and NR activity has been decreased. [source]


    Dynamics of the Dictyostelium discoideum mitochondrial proteome during vegetative growth, starvation and early stages of development

    PROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 1 2010
    Malgorzata Czarna
    Abstract In this study, a quantitative comparative proteomics approach has been used to analyze the Dictyostelium discoideum mitochondrial proteome variations during vegetative growth, starvation and the early stages of development. Application of 2-D DIGE technology allowed the detection of around 2000 protein spots on each 2-D gel with 180 proteins exhibiting significant changes in their expression level. In total, 96 proteins (51 unique and 45 redundant) were unambiguously identified. We show that the D. discoideum mitochondrial proteome adaptations mainly affect energy metabolism enzymes (the Krebs cycle, anaplerotic pathways, the oxidative phosphorylation system and energy dissipation), proteins involved in developmental and signaling processes as well as in protein biosynthesis and fate. The most striking observations were the opposite regulation of expression of citrate synthase and aconitase and the very large variation in the expression of the alternative oxidase that highlighted the importance of citrate and alternative oxidase in the physiology of the development of D. discoideum. Mitochondrial energy states measured in vivo with MitoTracker Orange CMRos showed an increase in mitochondrial membrane polarization during D. discoideum starvation and starvation-induced development. [source]


    Rosiglitazone increases fatty acid oxidation and fatty acid translocase (FAT/CD36) but not carnitine palmitoyltransferase I in rat muscle mitochondria

    THE JOURNAL OF PHYSIOLOGY, Issue 6 2008
    Carley R. Benton
    Peroxisome proliferator-activated receptors (PPARs) alter the expression of genes involved in regulating lipid metabolism. Rosiglitazone, a PPAR, agonist, induces tissue-specific effects on lipid metabolism; however, its mode of action in skeletal muscle remains unclear. Since fatty acid translocase (FAT/CD36) was recently identified as a possible regulator of skeletal muscle fatty acid transport and mitochondrial fatty acid oxidation, we examined in this tissue the effects of rosiglitazone infusion (7 days, 1 mg day,1) on FAT/CD36 mRNA and protein, its plasmalemmal content and fatty acid transport. In addition, in isolated subsarcolemmal (SS) and intermyofibrillar (IMF) mitochondria we examined rates of fatty acid oxidation, FAT/CD36 and carnitine palmitoyltransferase I (CPTI) protein, and CPTI and ,-hydroxyacyl CoA dehydrogenase (,-HAD) activities. Rosiglitazone did not alter FAT/CD36 mRNA or protein expression, FAT/CD36 plasmalemmal content, or the rate of fatty acid transport into muscle (P > 0.05). In contrast, rosiglitazone increased the rates of fatty acid oxidation in both SS (+21%) and IMF mitochondria (+36%). This was accompanied by concomitant increases in FAT/CD36 in subsarcolemmal (SS) (+43%) and intermyofibrillar (IMF) mitochondria (+46%), while SS and IMF CPTI protein content, and CPTI submaximal and maximal activities (P > 0.05) were not altered. Similarly, citrate synthase (CS) and ,-HAD activities were also not altered by rosiglitazone in SS and IMF mitochondria (P > 0.05). These studies provide another example whereby changes in mitochondrial fatty oxidation are associated with concomitant changes in mitochondrial FAT/CD36 independent of any changes in CPTI. Moreover, these studies identify for the first time a mechanism by which rosiglitazone stimulates fatty acid oxidation in skeletal muscle, namely the chronic, subcellular relocation of FAT/CD36 to mitochondria. [source]


    Characterization of Arabidopsis thaliana AtFKBP42 that is membrane-bound and interacts with Hsp90

    THE PLANT JOURNAL, Issue 3 2002
    Thilo Kamphausen
    Summary The twisted dwarf1 (twd1) mutant from Arabidopsis thaliana was identified in a screen for plant architecture mutants. The TWD1 gene encodes a 42 kDa FK506-binding protein (AtFKBP42) that possesses similarity to multidomain PPIases such as mammalian FKBP51 and FKBP52, which are known to be components of mammalian steroid hormone receptor complexes. We report here for the first time the stoichiometry and dissociation constant of a protein complex from Arabidopsis that consists of AtHsp90 and AtFKBP42. Recombinant AtFKBP42 prevents aggregation of citrate synthase in almost equimolar concentrations, and can be cross-linked to calmodulin. In comparison to one active and one inactive FKBP domain in FKBP52, AtFKBP42 lacks the PPIase active FKBP domain. While FKBP52 is found in the cytosol and translocates to the nucleus, AtFKBP42 was predicted to be membrane-localized, as shown by electron microscopy. [source]


    Preliminary X-ray crystallographic analysis of 2-methylcitrate synthase from Salmonella typhimurium

    ACTA CRYSTALLOGRAPHICA SECTION F (ELECTRONIC), Issue 4 2010
    Sagar Chittori
    Analysis of the genomic sequences of Escherichia coli and Salmonella typhimurium has revealed the presence of several homologues of the well studied citrate synthase (CS). One of these homologues has been shown to code for 2-methylcitrate synthase (2-MCS) activity. 2-MCS catalyzes one of the steps in the 2-methylcitric acid cycle found in these organisms for the degradation of propionate to pyruvate and succinate. In the present work, the gene coding for 2-MCS from S. typhimurium (StPrpC) was cloned in pRSET-C vector and overexpressed in E. coli. The protein was purified to homogeneity using Ni,NTA affinity chromatography. The purified protein was crystallized using the microbatch-under-oil method. The StPrpC crystals diffracted X-rays to 2.4, resolution and belonged to the triclinic space group P1, with unit-cell parameters a = 92.068, b = 118.159, c = 120.659,, , = 60.84, , = 67.77, , = 81.92. Computation of rotation functions using the X-ray diffraction data shows that the protein is likely to be a decamer of identical subunits, unlike CSs, which are dimers or hexamers. [source]


    Structure of pig heart citrate synthase at 1.78, resolution

    ACTA CRYSTALLOGRAPHICA SECTION F (ELECTRONIC), Issue 5 2009
    Steven B. Larson
    Pig heart citrate synthase was crystallized from a small-molecule cocktail containing cystamine dihydrochloride, aspartame and benzamidine hydrochloride. The structure was refined to an R factor of 0.179 (Rfree = 0.222) using synchrotron data to a resolution of 1.78,. The model includes the full-length protein, a chloride ion, a sulfate ion, 305 water molecules and an unexpected moiety attached through a disulfide linkage to Cys184, which was modeled as a half-cystamine molecule generated by disulfide exchange with the cystamine in the small-molecule cocktail. [source]


    Fourier transform infrared spectroscopy suggests unfolding of loop structures precedes complete unfolding of pig citrate synthase

    BIOPOLYMERS, Issue 4 2003
    Feride Severcan
    Abstract Pig citrate synthase (PCS) can be used as a model enzyme to gain some insight into the structural basis of protein thermostability. The thermal unfolding characteristics of the specific secondary structure elements within PCS were monitored in detail by following changes in its amide I band components. The result of our study indicates that PCS undergoes irreversible thermal denaturation. Detailed analysis reveals that the different secondary structures display a multistep transition with a major and a minor transition at different temperatures and a very small initial transition at the same temperature (30C). A plot of temperature-induced changes in 1H,2H exchange, the decrease in the absorbance of the ,-helical structures, and the increase in the absorbance of aggregated structures all have in common a multistep transition, the minor one centered at 45C and the major one around 59C. In contrast, a band that is tentatively assigned to loop structures displays these same minor and major transitions but at lower temperatures (39 and 52C, respectively). The transition, which occurs at 39,45C, is not associated with the appearance of aggregated structures. This transition may reflect a change in the tertiary structure of the protein. However, the final transition, which occurs at a higher temperature (52,59C), reflects unfolding and aggregation of the polypeptide chains. The Fourier transform infrared (FTIR) analysis suggests that PCS has a thermolabile region that unfolds first, some 7C below the main unfolding of the protein. We propose that this reflects the unfolding of the highly flexible loop segments, which in turn triggers the unfolding of the predominantly helical core structure of PCS. 2003 Wiley Periodicals, Inc. Biopolymers 69: 440,447, 2003 [source]


    Directing vanillin production from ferulic acid by increased acetyl-CoA consumption in recombinant Escherichia coli,

    BIOTECHNOLOGY & BIOENGINEERING, Issue 1 2009
    Eun-Gyeong Lee
    Abstract The amplification of gltA gene encoding citrate synthase of TCA cycle was required for the efficient conversion of acetyl-CoA, generated during vanillin production from ferulic acid, to CoA, which is essential for vanillin production. Vanillin of 1.98 g/L was produced from the E. coli DH5, (pTAHEF-gltA) with gltA amplification in 48 h of culture at 3.0 g/L of ferulic acid, which was about twofold higher than the vanillin production of 0.91 g/L obtained by the E. coli DH5, (pTAHEF) without gltA amplification. The icdA gene encoding isocitrate dehydrogenase of TCA cycle was deleted to make the vanillin producing E. coli utilize glyoxylate bypass which enables more efficient conversion of acetyl-CoA to CoA in comparison with TCA cycle. The production of vanillin by the icdA null mutant of E. coli BW25113 harboring pTAHEF was enhanced by 2.6 times. The gltA amplification of the glyoxylate bypass in the icdA null mutant remarkably increased the production rate of vanillin with a little increase in the amount of vanillin production. The real synergistic effect of gltA amplification and icdA deletion was observed with use of XAD-2 resin reducing the toxicity of vanillin produced during culture. Vanillin of 5.14 g/L was produced in 24 h of the culture with molar conversion yield of 86.6%, which is the highest so far in vanillin production from ferulic acid using recombinant E. coli. Biotechnol. Bioeng. 2009;102: 200,208. 2008 Wiley Periodicals, Inc. [source]


    Inhibition of calcineurin increases monocarboxylate transporters 1 and 4 protein and glycolytic enzyme activities in rat soleus muscle

    CLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, Issue 3 2005
    Masataka Suwa
    SUMMARY 1.,The present study was designed to examine the role of calcineurin in muscle metabolic components by the administration of the specific calcineurin inhibitor cyclosporine A (CsA) to rats. 2.,Male Wistar rats were divided into either a CsA-treated group (CT) or a vehicle-treated group (VT). Cyclosporine A was administered subcutaneously to rats at a rate of 25 mg/kg bodyweight per day for 10 successive days. Thereafter, changes in muscle enzyme activities and glucose transporter (GLUT)-4 and monocarboxylate transporter (MCT)-1 and MCT-4 proteins in the slow-twitch soleus and fast-twitch extensor digitorum longus (EDL) muscles were examined. 3.,There was a significant increase in MCT-1 and MCT-4 proteins in the soleus muscle in the CT group, but not in the EDL muscle. The activities of hexokinase, pyruvate kinase and lactate dehydrogenase in the soleus muscle also increased significantly in the CT group, but a similar increase in enzyme activity was not seen in EDL muscle. The activities of citrate synthase or malate dehydrogenase and the GLUT-4 protein content were not altered by CsA treatment in either the soleus or EDL muscles. 4.,These results seem to imply that calcineurin negatively regulates the components of glucose/lactate metabolism, except for GLUT-4, especially in slow-twitch muscle. [source]


    Endurance training adaptations modulate the redox,force relationship of rat isolated slow-twitch skeletal muscles

    CLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, Issue 1-2 2003
    David R Plant
    Summary 1.,Studies have shown that, in isolated skeletal muscles, maximum isometric force production (Po) is dependent on muscle redox state. Endurance training increases the anti-oxidant capacity of skeletal muscles, a factor that could impact on the force-producing capacity following exogenous exposure to an oxidant. We tested the hypothesis that 12 weeks treadmill training would increase anti-oxidant capacity in rat skeletal muscles and alter their response to exogenous oxidant exposure. 2.,At the conclusion of the 12 week endurance-training programme, soleus (slow-twitch) muscles from trained rats had greater citrate synthase (CS) and catalase (CAT) activity compared with soleus muscles from untrained rats (P < 0.05). In contrast, CAT activity of extensor digitorum longus (EDL; fast-twitch) muscles from trained rats was not different to EDL muscles of untrained rats. The CS activity was lower in EDL muscles from trained compared with untrained rats (P < 0.05). 3.,Equilibration with exogenous hydrogen peroxide (H2O2, 5 mmol/L) increased the Po of soleus muscles from untrained rats for the duration of treatment (30 min), whereas the Po of EDL muscles was affected biphasically, with a small increase initially (after 5 min), followed by a more marked decrease in Po (after 30 min). The H2O2 -induced increase in Po of soleus muscles from trained rats was less than that in untrained rats (P < 0.05), but no differences were observed in the Po of EDL muscles following training. 4.,The results indicate that 12 weeks endurance running training conferred adaptations in soleus but not EDL muscles. These adaptations were associated with an attenuation of the oxidant-induced increase in Po of soleus muscles from trained compared with untrained rats. We conclude that endurance training-adapted soleus muscles have a slightly altered redox,force relationship. [source]