Catchment Size (catchment + size)

Distribution by Scientific Domains


Selected Abstracts


Wavelet analysis of inter-annual variability in the runoff regimes of glacial and nival stream catchments, Bow Lake, Alberta

HYDROLOGICAL PROCESSES, Issue 6 2003
Melissa Lafrenière
Abstract Continuous wavelet analyses of hourly time series of air temperature, stream discharge, and precipitation are used to compare the seasonal and inter-annual variability in hydrological regimes of the two principal streams feeding Bow Lake, Banff National Park, Alberta: the glacial stream draining the Wapta Icefields, and the snowmelt-fed Bow River. The goal is to understand how water sources and flow routing differ between the two catchments. Wavelet spectra and cross-wavelet spectra were determined for air temperature and discharge from the two streams for summers (June,September) 1997,2000, and for rainfall and discharge for the summers of 1999 and 2000. The diurnal signal of the glacial runoff was orders of magnitude higher in 1998 than in other years, indicating that significant ice exposure and the development of channelized glacial drainage occurred as a result of the 1997,98 El Niño conditions. Early retreat of the snowpack in 1997 and 1998 led to a significant summer-long input of melt runoff from a small area of ice cover in the Bow River catchment; but such inputs were not apparent in 1999 and 2000, when snow cover was more extensive. Rainfall had a stronger influence on runoff and followed quicker flow paths in the Bow River catchment than in the glacial catchment. Snowpack thickness and catchment size were the primary controls on the phase relationship between temperature and discharge at diurnal time scales. Wavelet analysis is a fast and effective means to characterize runoff, temperature, and precipitation regimes and their interrelationships and inter-annual variability. The technique is effective at identifying inter-annual and seasonal changes in the relative contributions of different water sources to runoff, and changes in the time required for routing of diurnal meltwater pulses through a catchment. However, it is less effective at identifying changes/differences in the type of the flow routing (e.g. overland flow versus through flow) between or within catchments. Copyright © 2003 John Wiley & Sons, Ltd. [source]


Winter streamflow variability, Yukon Territory, Canada

HYDROLOGICAL PROCESSES, Issue 4 2002
R. D. Moore
Abstract Knowledge of winter streamflow regimes is required in northern catchments to evaluate water supply and to assess the vulnerability of aquatic habitat. The objective of this study was to explore the nature and causes of winter streamflow variability in northern rivers through examination of a limited number of case studies involving intensive field measurements, as well as a synoptic analysis of winter streamflow measurements archived by Water Survey of Canada for rivers in Yukon Territory, Canada. Evidence was found for an abrupt decrease in discharge at freeze-up in one of the case studies and for 10 of the 25 stations in the synoptic analysis that had measurements within 30 days of freeze-up (an additional 12 stations had no measurements within 30 days of freeze-up). However, given the paucity of measurements in the early winter, the magnitude, duration and frequency of these events cannot be specified. The case studies indicate that, even where a coherent depression does not occur, discharge can fluctuate around a smooth recession trend for about the first 30 days after the onset of ice effects, probably as a result of transient storage and release of water behind ice jams. A storage-depletion model that represents streamflow as outflow from two parallel linear reservoirs provided a reasonable fit to most of the observed measurements (excluding those in the first 30 days following freeze-up), with model fit deteriorating with increasing latitude and decreasing catchment size. The effect of latitude could relate to abstraction of flow by ice production, which would cause deviations from a storage-depletion trend. Northern catchments also tended to have steeper late-winter recessions, which could reflect a lack of extensive, deep aquifers to maintain late-winter discharge. The tendency to poorer model fit in smaller catchments could reflect a problem with data reliability, since it is more difficult to find good winter gauging sections in smaller streams. Some evidence for temperature-related discharge fluctuations was found in both the case studies and synoptic analyses. However, the magnitude of these effects appears to be about ±10 to 15%, at most, and not to be consistent between winters. Further advances in understanding winter streamflow variability will require frequent measurements on a range of streams over a number of winters. Copyright © 2002 John Wiley & Sons, Ltd. [source]


Controls on old and new water contributions to stream flow at some nested catchments in Vermont, USA

HYDROLOGICAL PROCESSES, Issue 3 2002
James B. Shanley
Abstract Factors controlling the partitioning of old and new water contributions to stream flow were investigated for three events in four catchments (three of which were nested) at Sleepers River Research Watershed in Danville, Vermont. In the 1993 snowmelt period, two-component isotopic hydrograph separations showed that new water (meltwater) inputs to the stream ranged widely from 41 to 74%, and increased with catchment size (41 to 11 125 ha) (with one exception) and with open land cover (0,73%). Peak dissolved organic carbon concentrations and relative alkalinity dilution in stream water ranked in the same order among catchments as the new water fractions, suggesting that new water followed shallow flow paths. During the 1994 snowmelt, despite similar timing and magnitude of melt inputs, the new-water contribution to stream flow ranged only from 30 to 36% in the four catchments. We conclude that the uncommonly high and variable new water fractions in streamwater during the 1993 melt were caused by direct runoff of meltwater over frozen ground, which was prevalent in open land areas during the 1993 winter. In a high-intensity summer rainstorm in 1993, new water fractions were smaller relative to the 1993 snowmelt, ranging from 28 to 46%, but they ranked in the identical catchment order. Reconciliation of the contrasting patterns of new,old water partitioning in the three events appears to require an explanation that invokes multiple processes and effects, including: 1.topographically controlled increase in surface-saturated area with increasing catchment size; 2.direct runoff over frozen ground; 3.low infiltration in agriculturally compacted soils; 4.differences in soil transmissivity, which may be more relevant under dry antecedent conditions. These data highlight some of the difficulties faced by catchment hydrologists in formulating a theory of runoff generation at varying basin scales. Copyright © 2002 John Wiley & Sons, Ltd. [source]


Alluvial fan development and morpho-tectonic evolution in response to contractional fault reactivation (Late Cretaceous,Palaeocene), Provence, France

BASIN RESEARCH, Issue 2 2009
S. Leleu
ABSTRACT Along-strike variability within a Late Cretaceous to early Palaeocene contractional growth structure and associated alluvial fan deposits is documented at the northern margin of the Arc Basin (Provence, SE France). This contribution shows that alluvial fans can be used as high-resolution proxies to reconstruct structural segmentation and palaeo-geomorphological evolution of a source/basin margin system. Facies-based reconstruction allows the spatial and temporal distribution of alluvial fan bodies to be mapped. Relationships between fan area and catchment size from modern alluvial fan systems were used to estimate palaeo-catchment size. Combining alluvial fan morphologies with catchment area, pebble provenance analysis and growth structure reconstruction, we show that: (1) fan distribution and related depositional processes were strongly influenced by intrinsic parameters such as drainage basin evolution, local structural inheritance and lateral facies changes in source area lithologies; (2) Inherited structures trending N100 effectively controlled the first-order location of the fold and thrust structures (Montagne Sainte-Victoire Range) and adjacent depositional areas (Arc Basin); (3) Syn-sedimentary faults trending N010-030 influenced the source/basin margin development and interacted with developing growth structures; (4) Facies changes in Jurassic carbonates controlled fold development and consequently the structural evolution of the source area; and (5) the N010-030 faults and along-strike variability of the source/basin margin system were ultimately controlled by basement structures that controlled where Late C etaceous deformation nucleated. The overall architecture of the source/basin margin system reflects segmentation and strain partitioning along strike, as demonstrated by diachronous alluvial fan distribution. [source]


Determination of bankfull discharge magnitude and frequency: comparison of methods on 16 gravel-bed river reaches

EARTH SURFACE PROCESSES AND LANDFORMS, Issue 11 2006
O. Navratil
Abstract Bankfull discharge is identified as an important parameter for studying river morphology, sediment motion, flood dynamics and their ecological impacts. In practice, the determination of this discharge and its hydrological characteristics is not easy, and a choice has to be made between several existing methods. To evaluate the impact of the choice of methods, five bankfull elevation definitions and four hydrological characterizations (determination of duration and frequency of exceedance applied to instantaneous or mean daily data) were compared on 16 gravel-bed river reaches located in France (the catchment sizes vary from 10 km2 to 1700 km2). The consistency of bankfull discharge estimated at reach scale and the hydraulic significance of the five elevation definitions were examined. The morphological definitions (Bank Inflection, Top of Bank) were found more relevant than the definitions based on a geometric criterion. The duration of exceedance was preferred to recurrence intervals (partial duration series approach) because it is not limited by the independency of flood events, especially for low discharges like those associated with the Bank Inflection definition. On average, the impacts of the choice of methods were very important for the bankfull discharge magnitude (factor of 1·6 between Bank Inflection and Top of Bank) and duration of exceedance or frequency (respectively a factor 1·8 and 1·9 between mean daily and instantaneous discharge data). The choice of one combination of methods rather than another can significantly modify the conclusions of a comparative analysis in terms of bankfull discharge magnitude and its hydrological characteristics, so that one must be cautious when comparing results from different studies that use different methods. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Geomorphology and fish assemblages in a Piedmont river basin, U.S.A.

FRESHWATER BIOLOGY, Issue 11 2003
D. M. Walters
Summary 1.,We investigated linkages between fishes and fluvial geomorphology in 31 wadeable streams in the Etowah River basin in northern Georgia, U.S.A. Streams were stratified into three catchment sizes of approximately 15, 50 and 100 km2, and fishes and geomorphology were sampled at the reach scale (i.e. 20,40 times stream width). 2.,Non-metric multidimensional scaling (NMDS) identified 85% of the among-site variation in fish assemblage structure and identified strong patterns in species composition across sites. Assemblages shifted from domination by centrarchids, and other pool species that spawn in fine sediments and have generalised food preferences, to darter-cyprinid-redhorse sucker complexes that inhabit riffles and runs, feed primarily on invertebrates, and spawn on coarser stream beds. 3.,Richness and density were correlated with basin area, a measure of stream size, but species composition was best predicted (i.e. |r| between 0.60,0.82) by reach-level geomorphic variables (stream slope, bed texture, bed mobility and tractive force) that were unrelated to stream size. Stream slope was the dominant factor controlling stream habitat. Low slope streams had smaller bed particles, more fines in riffles, lower tractive force and greater bed mobility compared with high slope streams. 4.,Our results contrast with the ,River Continuum Concept' which argues that stream assemblages vary predictably along stream size gradients. Our findings support the ,Process Domains Concept', which argues that local-scale geomorphic processes determine the stream habitat and disturbance regimes that influence stream communities. [source]


Areal PMP distribution of one-day to three-day duration over India

METEOROLOGICAL APPLICATIONS, Issue 4 2002
C P R Clark Rakhecha
There is a need to assess the areal depth of the probable maximum precipitation (PMP) over specified catchment areas for the safe construction of dam spillways. The large number of dams in India, coupled with their risk of failure, makes this need imperative both for the maximum use of water resources and for public safety. On the basis of rainfall data for the heaviest storms that occurred in different parts of India during the period 1880,1983, improved estimates of one-, two-, and three-day point PMP for India have been made. In this paper the distribution of areal PMP over specified catchment sizes is provided for the first time. The areal reduction factors (ARF) were based on envelope curves of major storms to give the ARF for areas of 10,20,000 km2 . These factors were found to vary from 1.0 to 0.41, though there was no real difference between durations of rainfall. These values of ARF were then multiplied by values of one- to three-day PMP. The resulting maps allow a broad description of the spatial distribution of areal PMP and also provide a rapid and consistent estimate of the probable maximum flood (PMF) from the PMP. For 500 km2 the areal PMP varies from 40 to 120 cm for one-day duration; from 70 to 200 cm for twoday duration; and from 75 to 270 cm for three-day duration. The pattern of PMP is consistent with the geography and available moisture. Copyright © 2002 Royal Meteorological Society. [source]


A new index of access to primary care services in rural areas

AUSTRALIAN AND NEW ZEALAND JOURNAL OF PUBLIC HEALTH, Issue 5 2009
Matthew R. McGrail
Abstract Objective: To outline a new index of access to primary care services in rural areas that has been specifically designed to overcome weaknesses of using existing geographical classifications. Methods: Access was measured by four key dimensions of availability, proximity, health needs and mobility. Population data were obtained through the national census and primary care service data were obtained through the Medical Directory of Australia. All data were calculated at the smallest feasible geographical unit (collection districts). The index of access was measured using a modified two-step floating catchment area (2SFCA) method, which incorporates two necessary additional spatial functions (distance-decay and capping) and two additional non-spatial dimensions (health needs and mobility). Results: An improved index of access, specifically designed to better capture access to primary care in rural areas, is achieved. These improvements come from: 1) incorporation of actual health service data in the index; 2) methodological improvements to existing access measures, which enable both proximity to be differentiated within catchments and the use of varying catchment sizes; and 3) improved sensitivity to small-area variations. Conclusion: Despite their recognised weaknesses, the Australian government uses broad geographical classifications as proxy measures of access to underpin significant rural health funding programs. This new index of access could provide a more equitable means for resource allocation. Implications: Significant government funding, aimed at improving health service access inequities in rural areas, could be better targeted by underpinning programs with our improved access measure. [source]